Eliminating OO Patterns
by Java Functional Features

An explorative study
Technical Report (TR-OU-INF-2019-01)

A. Bijlsma*!, A.J.F. Kok, H.J.M. Passiert!, H.J. Pootjes®! and S.
Stuurman!

YOpen Universiteit, Faculty of Management, Science and
Technology, Department of Computer Science, Postbus 2960, 6401
DL Heerlen, The Netherlands

October 30, 2019

*lex.bijlsma@ou.nl
Tarjan.kok@ou.nl
tharrie.passier@ou.nl
$harold.pootjes@ou.nl
Isylvia.stuurman@ou.nl

1 Introduction

Design patterns are standard solutions to common design problems. The famous
Gang of Four (GoF) book describes twenty-three design patterns for the object-
oriented (00) paradigm [9]. Most of these patterns are based on the 00 concepts
delegation, inheritance, abstract class and interface.

Meanwhile, the functional paradigm has also become more popular. Besides
pure functional languages, such as Haskell [13], more and more programming
languages incorporate functional features and are in fact multi-paradigm lan-
guages. Examples are Scala [19] and JavaScript [21]. Java incorporates func-
tional concepts from version 8, such as function objects as first class citizens and
function composition, implemented by Java syntax constructs such as lambda
expressions, functional interfaces and streams [14].

A disadvantage of the classical 00 design patterns is that they do not always
fit domain concepts when applied in concrete situations. For an example, look at
the Strategy pattern, where a context object maintains a reference to a strategy
defining an interface common to all possible concrete strategies. The strategy
can be a real interface or an (abstract) class. Each concrete strategy requires
a separate class in Java, even when the concrete strategies are in fact pure
functions. Therefore, the conceptual model of a strategy, i.e. define a family of
algorithms and choose one to use, becomes muddied by compound concepts as
inheritance and complex class/object structures due to the limitations of the
00 language syntax constructs.

In this report we investigate to what extent the solutions that 00 design
patterns offer can be replaced by functional features of Java, in such a way that
the resulting solutions support more effectively the conceptual model underlying
the original program design. It becomes clear that certain patterns can be
simplified using functional features where we often use enum types as containers
to hold functions together. We investigate the patterns that are concerned with
algorithms. So, behavioral patterns are most likely to be investigated. However,
we do not exclude the other (creational and structural) patterns. Finally, we
derive some rules of thumb to determine which patterns can be simplified and
how this can be done.

UML class diagrams [2, 15] are helpful during the design and implementation
of object oriented systems. Today, UML does not support functional features
explicitly. It is a problem to show functional features as first-class citizens
clearly in a UML class diagram. We shall propose one way of incorporating
functional features into UML class diagrams.

Contributions. In this report, we have the following contributions:

e For the patterns Strategy, Template Method, Command, Decorator and
Vistor we discuss and present alternative structures using Java’s functional
features and investigate the advantages and disadvantages of applying
functional features to these patterns.

e We derive rules of thumb to determine when a pattern can be simplified
using functional features and how this can be done.

e We present a proposal for how functional features can be depicted in UML
design class diagrams.

Remark. The symbol A indicates the end of a remark and the resumption
of normal text. Likewise, the symbol (I indicates the end of an short delimited
example. A

Remark. We limit ourselves to the programming language Java version 11
and UML version 2.5. VAN

This report. Section 2 describes briefly the functional features of Java we
use in this report. In Section 3, we start with analyzing the Strategy pattern
which seems an obvious candidate for the application of functional features.
Next, the patterns Template Method, Command, Decorator and Visitor follow
in the Sections 4, 5, 6 and 7. In each of these sections, we start with presenting
an example using the standard pattern as described in the GoF book. After
that, we try to simplify the pattern using functional features. We analyze the
advantages and disadvantages in terms of reduction of complexity and increase
of flexibility. Section 8 proposes how functional features can be incorporated
into UML class diagrams. We describe related work in Section 9. Finally, in
we discuss our results, present our rules of thumb to determine when and how
functional features can be applied generally to simplify design patterns, draw
our conclusions and describe future work.

2 Preliminaries

Functional programming in Java makes use of lambda expressions, function
objects, functional interfaces and streams [20]. These topics are briefly described
in the following subsections.

2.1 Lambda expressions in Java

A lambda expression in Java resembles syntactically the standard notation, i.e.
parameter list — function body. One argument can be listed in or without
parentheses. Thus, x -> x+1 as well as (x) -> x+1 are both correct Java expres-
sions. No argument is represented by an empty parameter list, for example
() -> System.out.println("Hello world”). For multiple parameters, parentheses
are required, as in (x,y,z) -> x+y+z.

If an expression contains a single statement, no curly braces enclosing the
expression’s body are needed. Curly braces are required when the body consists
of two or more statements.

There is no need to declare the type of a parameter, i.e. the compiler can
infer the type of the parameters.

When the body has one single expression, the compiler automatically returns
the resulting value (without the need of a return statement). A return is needed
in cases of multiple statements.

2.2 Functional interfaces in Java

A Java functional interface is annotated by @FunctionalInterface and has exactly
one abstract method. The number of arguments is free as is the type of the
arguments. Listing 1 shows an example.

Listing 1: Example of a Java functional interface

@Functionallnterface
public interface IFunction {
int doFunction(int a, int b);

3

It is common practice to get instances of this interface using a factory as
shown in Listing 2. Factory FunctionFactory provides two instances of doFunction:
a function that adds two integer and a function that multiplies two integers. No-
tice that in both cases an anonymous function in the form of a lambda expression
is returned. The compiler takes care of bounding both function expressions to
the function’s name doFunction of the functional interface.

Listing 2: Use of a factory

public class FunctionFactory {

public static IFunction getFunctionAdd() {
return (a, b) -> a + b;

}

public static IFunction getFunctionMul() {
return (a, b) -> a * b;
}
}

public class Main {
public static void main(String[] args) {
IFunction mul = FunctionFactory.getFunctionMul ();
System.out.println(mul.doFunction(3, 7));
}
}

An alternative for specifying and implementing your own functional inter-
faces, is the use of Java’s predefined functional interfaces, see Table 1. An
example of a predefined functional interface is BinaryOperator<Integer> which
accepts a lambda expression that takes two integers as arguments and returns
an integer as result value. To invoke the lambda expression, we have to use
BinaryOperator’s method apply. An example is given in Listing 3.

Listing 3: Use of the predefined interface BinaryOperator<Integer>

import java.util.function.BinaryOperator;
public class FunctionFactory {

public static BinaryOperator<Integer> getFunctionAdd() {
return (a, b) -> a + b;

3

public static BinaryOperator<Integer> getFunctionMul () {
return (a, b) -> a * b;
}
}

public class Main {
public static void main(String[] args) {
BinaryOperator<Integer> mul = FunctionFactory.getFunctionMul ();
System.out.println(mul.apply(3, 7));
}
}

Table 1: Java’s predefined functional interfaces

Functional Parameter Return Abstract Other
Interface Types Type Method Methods
Runnable none void run
Supplier<T> none T get
Consumer<T> T void accept andThen
BiConsumer<T, U> T, U void accept andThen
Function<T, R> T R apply compose,
andThen,
identity
BiFunction<T, U, R> T, U R apply andThen
UnaryOperator<T> T T apply compose,
andThen,
identity
BinaryOperator<T> T, T T apply andThen
Predicate<T> T boolean test and,
or,
negate,
isEqual
BiPredicate<T, U> T, U boolean test and,
or,
negate

2.3 Streams

Streams can be used as a functional alternative for collections. The standard
workflow is to convert a collection into a stream of type Stream. The Stream
interface contains a series of operations each of which corresponds to a known
operation, for example map and filter, that performs on a collection. Using these
operations, the stream can be manipulated in a functional manner by composing
a number of functions into a pipeline. After manipulation, the stream can be
transformed back into a collection.

Stream operations are divided into intermediate operations and terminal
operations. Intermediate operations transform a stream into another stream.
An example is filter(Predicate) that returns a substream consisting of the el-
ements that match given predicate. Predicate is a lambda function that takes
one element and returns true or false. Other examples are map() and sorted().
Terminal operations produce a final result or side effect. An example is count()
resulting in a number, i.e. the number of elements in the stream. Other exam-
ples are forEach(), reduce(), min(), max(), and sum(). Most of these operations
take a lambda expression as argument. Finally, there are operations to convert
a collection instance into a stream back and forth. An example is stream().

Manipulating a stream is often performed using a pipeline. A pipeline con-

sists of a source (which might be an array, a collection, a generator function,
an I/O channel, et cetera), followed by zero or more intermediate operations
(transforming a stream into another manipulated stream), possibly followed by
a terminal operation (producing a final result or side effect).

Suppose we have a number of integers as input and we want to display the
square of the even numbers only. Listing 4 shows the creation of a stream and
the pipeline.

Listing 4: Creation of a stream and pipeline

IntStream stream = IntStream.of (7, 8, 9, 10, 11, 12);
stream.filter(e -> e % 2 == 0)

.map(e -> e * e)

.forEach(e -> System.out.println(e));

When in a lambda expression an already defined method is invoked, we can
use a method reference. In listing 4 instead of e -> System.out.println(e) we
can write System.out::println as parameter of the forEach() method.

Furthermore, instead of using nameless lambda expression we can give them
a name so they can be reused in other expressions. Listing 5 shows an example.

Listing 5: Method reference and named lambda expression

Intstream stream = IntStream.of (7, 8, 9, 10, 11, 12);
IntPredicate isEven = e -> e % 2 == 0;
IntUnaryOperator square = e -> e * e;
stream.filter (isEven)

.map(square)

.forEach(System.out::println);

2.4 Function composition

Several of Java’s functional interfaces of Table 1 define methods compose() and
andThen() to combine several instances of the interface into a complex function.
Listing 6 shows a simple example.

Listing 6: Function composition (I)

Function<Integer, Integer> plusl =i -> i + 1;
Function<Integer, Integer> doublelIt = i -> i * 2;
Function<Integer, Integer> composition = plusl.andThen(doublelt);

System.out.println(composition.apply(5)); // result is 12

Two instances of functional interface Function are composed into a new func-
tion. First, plus1() is applied and then doubleIt(). If we had used compose()

instead of andThen() the order of application had been reversed. Because the re-
sult type of this composition is Function, we can compose an even more complex
function, as shown in Listing 7.

Listing 7: Function composition (II)

Function<Integer, Integer> composition2 =
composition.andThen(plus1).andThen(doubleIt);
System.out.println(composition2.apply(5)); // result is 26

2.5 Constants, enumerations and lambda expressions

There are several ways to refer to a lambda expression. Because in most cases
the lambda expressions are known at compile time, we can use constants, i.e.
static final variables. Listing 8 shows and example.

Listing 8: Referring to a lambda expression

public static final BinaryOperator<Integer> DIRECTMUL =
(x, y) => x * y;

An alternative is to use an enumeration. Enumerations are suitable to hold
a number of related functions, where each function is labeled with a enumera-
tion constant. An enumeration (enum type) can be regarded as a special class
with attributes, methods and a constructor. If an enumeration has an abstract
method, then each constant of the enumeration must implement this method.
The implementation can be a normal method without a lambda expression. An
example is shown in Listing 9.

Listing 9: The enumeration as holder of methods

public enum Multiply {

DIRECTMUL {
public Integer apply(Integer a, Integer b) {
return a * b;
}
1,

OTHERMUL {
public Integer apply(Integer a, Integer b) {
return otherMul(a, b);
}
}

public abstract Integer apply(Integer a, Integer b);

private static Integer otherMul(Integer a, Integer b) {
// other implementation of multiplication
}
3

We can perform multiplications by calling the method apply on the enumer-
ation constant as in Listing 10.

Listing 10: Example of usage of enumeration

System.out.println(Multiply.DIRECTMUL.apply (3, 4));
System.out.println(Multiply.OTHERMUL. apply (3, 4));

We can extract the definition of the function apply to a (functional) interface.
We can define our own interface. However, in this case we can use the stan-
dard interface BinaryOperator, as it defines the required signature for the apply
method. Now, the enumeration can implement this interface, see Listing 11.

Listing 11: The enumeration as holder of methods implementing an inter-
face

public enum Multiply implements BinaryOperator<Integer> {
DIRECTMUL {
public Integer apply(Integer a, Integer b) {
return a * b;

3
3,
OTHERMUL {
public Integer apply(Integer a, Integer b) {
return otherMul(a, b);
3
3

private static Integer otherMul(Integer a, Integer b) {
// other implementation of multiplication
3
}

An advantage of using a standard interface over a self-defined interface is
that the extra functionality of the standard functional interfaces can direclty be
used, for example for function composition. An example is given in Listing 12.
The result of the multiplication is incremented by 1.

Listing 12: Example of usage of an enumeration with function composition

Function<Integer, Integer> plusl =i -> i + 1;
System.out.println(Multiply2.DIRECTMUL.andThen(plus1).apply (3, 4));

We can define a direct relation between an enumeration constant and a
lambda expression as function. An attribute will store the lambda expression,
and this attribute gets is value (i.e. the lambda expression) using a constructor.
The type of the attribute must be an (functional) interface. The exact type
depends on the lambda expression, i.e. its number and type of parameters and
its type of return value. An example is given in Listing 10. The lambda expres-
sions used have two integer parameters and an integer return value. Therefore,
functional interface BinaryOperator<Integer> is a suitable type, see Table 1. We
can call method apply in the same way as before (Listing 10).

Listing 13: Extending the enumeration

public enum Multiply implements BinaryOperator<Integer> {

DIRECTMUL ((a, b) -> a * b),
OTHERMUL ((a, b) -> otherMul(a, b));

private BinaryOperator<Integer> multiplier;

Multiply (BinaryOperator<Integer> multiplier){
this.multiplier = multiplier;

3

private static Integer otherMul(Integer a, Integer b) {
// other implementation of multiplication

}

public Integer apply(Integer a,Integer b) {
return multiplier.apply(a, b);
}
}

The introduction of the lambda expressions in the enumeration makes the
code more complex, because an attribute and a constructor are introduced.
Therefore, when a enumeration is used as holder of functions, the versions of
Listings 9 and 11 are most suitable.

An alternative is to use a class or an interface as holder of functions. List-
ing 14 shows an interface containing functions. We can call method apply of the
functions in the same way as before (Listings 10 and 12).

Listing 14: Interface containing functions

public interface Multiply {

10

3

BinaryOperator<Integer> DIRECTMUL = (a , b)

BinaryOperator<Integer> OTHERMUL = (a, b) -> otherMul(a,

private static Integer otherMul(Integer a,
// other implementation of multiplication

}

-> a + b;

Integer b) {

b);

This version is the most concise.

11

3 The Strategy pattern

The strategy design pattern is intended to provide a way of selecting a strategy
from a range of interchangeable strategies. This pattern defines several imple-
mentations of this strategy, and at runtime can be decided which implementation
is used.

3.1 The standard object oriented approach

The GoF book shows an object oriented solution, see Figure 1 and Listing 15.
Each concrete strategy is defined in a separate class that implements a common
interface Strategy that defines the function(s) of the strategies. In Figure 1
the strategies define just one function: execute (types X and Y are not further
specified). The strategy is used by the class Context in method executeStrategy.
Which of the available strategies will be used, is set with method setStrategy,
that is called with an instance of the required strategy.

Context <interface>>
-strategy Strategy
++setStrategy(Strategy) 1
~+executeStrategy() execute(X):Y
| |
1 1
StrategyA StrategyB
“execute(X):Y +execute(X):Y

Figure 1: The strategy pattern, object oriented approach (Listing 15)

Listing 15: The strategy pattern, object oriented approach

public interface Strategy {
public Y execute(X x);

3

public class StrategyA implements Strategy {

public Y execute(X x) {
// implementation for strategy A
3
}

public class StrategyB implements Strategy {

public Y execute(X x) {
// implementation for strategy B
¥
}

12

public class Context {
private Strategy strategy;

public void setStrategy(Strategy strategy) {
this.strategy = strategy;

}

public void executeStrategy() {

y = strategy.execute(x);

A simple example how to apply the strategy pattern is given in Listing 16.
Here, the instance of the concrete strategy is created directly. Usually this
creation will be done with a factory.

Listing 16: Application of the object oriented strategy pattern

public static void main(String[] args) {
Context context = new Context();
context.setStrategy(new StrategyA());
context.executeStrategy ();
context.setStrategy(new StrategyB());
context.executeStrategy();

3.2 An alternative approach using an enumeration

With an enumeration it is possible to implement the equivalent of the strategy
pattern without the class hierarchy, see Figure 2 and Listing 17. All differ-
ent implementations of the strategy functions are defined in one enumeration
Strategies. This enumeration replaces the class hierarchy of the object oriented
approach. Each enumeration constant is coupled to one (or more) function(s),
by implementing the strategy methods defined as abstract methods in the enu-
meration. In the given listing, each constant implements the strategy method
execute. Class Context operates in the same way as in the object oriented version.

< enumeration>>
Context Strategies
-strategy
STRATEGYA
+setStrategy (Strategy) 1| STRATEGYB
~+executeStrategy()
+ezecute(X):Y

Figure 2: The strategy pattern, enumeration approach (Listing 17)

13

Listing 17: The strategy pattern, enumeration approach

public enum Strategies {

STRATEGYA {
public Y execute(X x) {
// implementation of strategy A
3}
3,

STRATEGYB {
public Y execute(X x) {
// implementation of strategy B
}
3

public abstract Y execute(X x);

3

public class Context {
private Strategies strategy;

public void setStrategy(Strategies strategy) {

this.strategy = strategy;
}

public void executeStrategy () {

y = strategy.execute(x);

A simple example how to apply the strategy pattern is given in Listing 18.
Note that now the client doesn’t create instances of the strategies itself. So no
factory is needed.

Listing 18: Application of the enumeration strategy pattern

public static void main(String[] args) {
Context context = new Context();
context.setStrategy(Strategies.STRATEGYA);
context.executeStrategy ();
context.setStrategy(Strategies.STRATEGYB);
context.executeStrategy ();

3.3 An alternative approach with an interface

Section 2.5 showed that an interface (or class) also can be used to store functions
in a compact way. Figure 3 and Listing 19 show an implementation of the

14

strategy pattern where the functions are stored in an interface. Each function
in Strategies is a lambda function.

Context <interface>>
-strategy Strategy
+setStrategy (Strategy) 1
+executeStrategy() execute(X):Y

)
|
|
I

<Linterface>>
Strategies

STRATEGYA
STRATEGYB

Figure 3: The strategy pattern, functions defined in an interface (listing 19)

Listing 19: The strategy pattern, functions defined in interface

public interface Strategy {
void Y execute(X x)

}

public class Context {
private Strategy strategy;

public void setStrategy(Strategy strategy) {
this.strategy = strategy;
3

public void executeStrategy() {

y = strategy.execute(x);

}
}
public interface Strategies {
STRATEGYA = (x) -> ... // a lambda expression using parameter x
STRATEGYB = (x) -> ... // another lambda expression using x

A simple example how to apply the strategy pattern is given in Listing 20.

Listing 20: Application of strategy pattern with functions from an interface

public static void main(String[] args) {
Context context = new Context();
context.setStrategy(Strategies.STRATEGYA);
context.executeStrategy ();

15

context.setStrategy(Strategies.STRATEGYB);
context.executeStrategy ();

}

However, this solution does not restrict the strategies to be used to those
defined in given interface. All methods or lambda expressions that match the
interface Strategy can be passed to method setStrategy, wherever they are de-
fined, see Listing 21. Therefore, it is a very flexible solution, but there is not
much control of what the strategies will do.

Listing 21: Application of the functional strategy pattern

public static void main(String[] args) {
Context context = new Context();
context.setStrategy(Strategies.STRATEGYA);
context.executeStrategy ();
context.setStrategy(Strategies.STRATEGYB);
context.executeStrategy ();

// class C contains method that match interface Strategy
context.setStrategy(C::method);

context.executeStrategy ();

context.setStrategy ((x)->doSomethingCompletelyDifferent(x));
context.executeStrategy ();

3.4 Discussion of the approaches

The object oriented and enumeration approaches meet the intent of the strategy
pattern: define a family of algorithms and make them interchangeable. The
interface approach does not limit the possible strategies, and therefore does not
completely meet this intent. This interface approach will not be considered
further !.

The main difference between the two remaining approaches is where the
functions are defined: each strategy in its own class for the object oriented
approach or all strategies in one enumeration for the enumeration approach.

The advantage of the object oriented approach is that adding a new strat-
egy only means adding a new class for this new strategy. Existing classes are
not modified. Adding a new strategy in the enumeration approach means ex-
tending the existing enumeration (Strategies). However, this enumeration is
only extended, existing code is not modified. In all cases the extension can be
added without modifying existing code. Therefore, both approaches satisfy the
Open-Closed principle [16].

IFor the other patterns in this report the interface approach will have the same disadvan-
tage. Therefore, we will not investigate this approach for the other patterns.

16

The enumeration approach simplifies the class structure, i.e. the subclasses
of the strategy have been removed. The cost of this simplification of the class
structure is an increased size of the enumeration or the class that contains
the strategies, as all implementations of strategies are now collected in this
enumeration or class. Therefore, the enumeration approach seems to be most
applicable when the implementations of the strategies are simple, i.e. exist of a
limited number of lines of code.

Remark. There is a difference in the exact functionality between the different
approaches. A concrete strategy in the enumeration has singleton behavior:
all users of a strategy in an application use the same object. In the object
oriented approach an application can create and use several instances of the
same strategy. This difference only shows when the strategies store states.
When the strategies contain pure functions, this difference can be ignored. A

Remark. From the uML class diagrams of Figure 1, it is directly clear that
it represents a strategy pattern and which variations of the strategy exist. The
pattern is not explicitly present in the UML class diagram of the enumeration
approach in Figure 2. Only the names of the strategies are directly visible, but
not the functions for each strategy. We will discuss a proposal to extend UML
for enumerations in Section 8. A

Remark. Insome applications the subclasses of Strategy in the object oriented
approach need to store information (state) as attributes. The functions in the
enumeration approach do not have attributes to store state, as this approach
uses pure functions. To overcome this problem, the Context can manage the
state information and pass this information to the functions as parameters.
When each strategy needs another type of state information, so each strategy
needs its own class, then the object oriented approach is preferred over the other
approaches. The advantage of the other approaches is eliminated, as the number
of state objects equals the number of subclasses, so no reduction of classes is
achieved. A

17

4 The Template Method pattern

The template method design pattern is intended to vary part(s) of the im-
plementation of an algorithm without changing the structure of the algorithm
(where the strategy pattern varies the complete algorithm).

4.1 The standard object oriented approach

The GoF book shows an object oriented solution, see Figure 4 and Listing 22.
The skeleton of an algorithm (templateMethod) is defined in a class together
with some abstract ’hook’ methods (primitiveOperationi, primitiveOperation2).
These hook methods are used within the algorithm, but the implementations of
these methods are deferred to concrete subclasses (ClassA and ClassB). To guar-
antee that the skeleton of the algorithm can not be overridden in the subclasses,
method templateMethod is usually declared final.

AbstractClass

~+templateMethod ()
#primitive Operationl()
#primitive Operation?2()

ClassA ClassB
#primitiveOperationl () #primitiveOperation1()
#primitiveOperation2() #primitiveOperation2()

Figure 4: The template method pattern, object oriented approach (Listing 22)

Listing 22: The template method pattern, object oriented approach
public abstract class AbstractClass {
public final void templateMethod() {
béimitiveOperation1();
ééimitiveOperationZ();
. .
protected abstract void primitiveOperationl();
protected abstract void primitiveOperation2();

}

public class ClassA extends AbstractClass {

18

protected void primitiveOperationl () {
// implementation

3

protected void primitiveOperation2() {
// implementation
}
¥

public class ClassB extends AbstractClass {

protected void primitiveOperationl () {
// implementation

3

protected void primitiveOperation2() {
// implementation
3
}

A simple example how to apply the template method pattern is given in List-
ing 23. Here, the instance of the concrete classes are created directly. Usually
this will be done with a factory.

Listing 23: Application of the object oriented template method pattern

public static void main(String[] args) {
AbstractClass class1l = new ClassA();
class1.templateMethod();
AbstractClass class2 = new ClassB();
class2.templateMethod();

}

4.2 An alternative approach using an enumeration

With an enumeration it is possible to implement the equivalent of the template
method pattern without the class hierarchy, see Figure 5 and Listing 24. The
primitive (hook) operations to be used in the template method (templateMethod)
are defined in the enumeration Hooks. By assigning an enumeration constant to
the template class, the hook operations defined by given enumeration constant
are applied in templateMethod.

Listing 24: The template pattern, enumeration approach

public class TemplateClass {
private Hooks hooks;

19

<enumeration>>

TemplateClass Hooks
-hooks | HOOKSA
+TemplateClass(Hooks) 1| HOOKSB
templateMethod() +primitiveOperationl()

+primitiveOperation2()

Figure 5: The template pattern, enumeration approach (Listing 24)

public TemplateClass(Hooks hooks) {
this.hooks = hooks;

}

public final void templateMethod() {
Eééks.primitiveOperation1();
Eééks.primitiveOperationZ();

}
3

public enum Hooks {
HOOKSA {

public void primitiveOperationi() {
// implementation

}

public void primitiveOperation2() {
// implementation
}
1,

HOOKSB {

public void primitiveOperationl () {
// implementation

}

public void primitiveOperation2() {
// implementation
}
3

public abstract void primitiveOperationl();
public abstract void primitiveOperation2();

}

A simple example how to apply the template method pattern is given in
Listing 25. Note that now the client doesn’t create instances of the concrete

20

classes itself as in the object oriented approach. So no factory is needed.

Listing 25: Application of the enumeration template method pattern

public static void main(String[] args) {
TemplateClass classl = new TemplateClass(Hooks.HOOKSA);
classl.templateMethod();
TemplateClass class2 = new TemplateClass(Hooks.HOOKSB);
class2.templateMethod ();

}

4.3 Discussion of the approaches

The advantages and disadvantages are the same as for the Strategy pattern,
summarizing:

e Both approaches satisfy the intent of the Template pattern.
e Both approaches satisfy the Open-Closed principle.
e In the enumeration approach the class structure is simplified.

e The enumeration approach seems to be most applicable when the im-
plementations of the template methods are simple, i.e. exist of limited
number of lines of code.

e When state information is needed in the enumeration approach, this in-
formation has to be passed as parameters tot the functions.

21

5 The Command pattern

The command design pattern is intended to “encapsulate a request as an object,
thereby letting you parameterize clients with different requests, queue or log re-
quests, and support undoable operations” [9]. The command pattern decouples
the object that invokes the operation from the object that has the knowledge
to execute it.

5.1 The standard object oriented approach

The standard object oriented solution is shown in Figure 6 and Listing 26.
Concrete commands (here of classes CommandA and CommandB) define a binding
between a receiver object and an action on this object, that is performed in
the execute method of the command. Requests are carried out by the invoker
object, by delegating the responsibility to a command object.

In this example the invoker stores one command at a time. In many examples
of the command pattern the invoker stores several commands in a collection. In
those examples the method execute of the invoker executes all stored commands
or first selects one of the commands to be executed.

Invoker <interface>>
-command | Command
+register(Command) 1
“+request() execute()
l l
CommandA CommandB
-+CommandA (Receiver) -+CommandB(Receiver)
“+execute() -+execute()
Receiver
-receiver -receiver
1| +actionl() |1
+action2()

Figure 6: The command pattern, object oriented approach (Listing 26)

Listing 26: The command pattern, object oriented approach

public class Invoker {
private Command command;

public void register(Command command) {
this.command = command;

3

22

public void request() {
command . execute ();
}
3

public interface Command {
void execute();

}

public class CommandA implements Command {
private Receiver receiver;

public CommandA(Receiver receiver) {
this.receiver = receiver;

}

public void execute() {
receiver.actionl();
}
3

public class CommandB implements Command {
private Receiver receiver;

public CommandB(Receiver receiver) {
this.receiver = receiver;

}

public void execute() {
receiver.action2();
3
}

public class Receiver {

public void actionl1() {
// implementation

}

public void action2() {
// implementation
}
3

A simple example how to apply the command pattern is given in Listing 27.
Here, the instances of the concrete commands are created directly. Usually this
will be done with a factory.

Listing 27: Application of the object oriented command pattern

public static void main(String[] args) {

23

Receiver receiverl = new Receiver();
Receiver receiver2 = new Receiver();
Invoker invoker = new Invoker();
invoker.register(new CommandA(receiverl));
invoker.execute();

invoker.register(new CommandB(receiver2));
invoker.execute ();

invoker.register(new CommandA(receiver2));
invoker.execute ();

5.2 An alternative approach using an enumeration

Just as with the patterns described earlier, it is possible to replace the inheri-
tance relation with an enumeration, see Figure 7 and Listing 28. As the concrete
commands now are enumeration values, it is not possible to store the receiver
in the concrete commands 2. Therefore, the receiver is stored with the invoker,
and passed to the command when the command is to be executed.

<enumeration™>
Invoker Command

-command

COMMANDA
+register(Receiver, Command) 1] COMMANDB

“request()

+ezecute(Recewer)
T

v
Receiver

-receiver

1| -+actionl()
faction2()

Figure 7: The command pattern, enumeration approach (Listing 28)

Listing 28: The command pattern, enumeration approach

public class Invoker {
private Command command;
private Receiver receiver;

public void register(Receiver receiver, Command command) {
this.receiver = receiver;
this.command = command;

2Technically it is possible to add an attribute to an enumeration. However, as there is only
one “instance” of the enumeration (constant), the value of the attribute is shared amongst all
users of the enumeration (constant), which may cause unwanted effects

24

3

public void request() {
command.execute (receiver);
3
}

public enum Command {

COMMANDT {
public void execute(Receiver receiver) {
receiver.actionl();

}
3,
COMMAND2 {
public void execute(Receiver receiver) {
receiver.action2();
3
3

public abstract void execute(Receiver receiver);

}
public class Receiver {

public void actionl1() {
// implementation

3

public void action2() {
// implementation
}
}

A simple example how to apply the command pattern is given in Listing 29.

Listing 29: Application of the enumeration command pattern

public static void main(String[] args) {
Receiver receiver1l = new Receiver();
Receiver receiver2 = new Receiver();
Invoker invoker = new Invoker();
invoker.register(receiver1, Command.COMMAND1);
invoker.execute ();
invoker.register(receiver2, Command.COMMAND2);
invoker.execute ();
invoker.register(receiver2, Command.CommandA);
invoker.execute();

A disadvantage of this approach is that the receiver cannot be hidden for
the invoker. The invoker has to know the receiver, as the command cannot

25

store it. You can therefore argue whether this approach meets the intent of the
commmand pattern.

5.3 An alternative approach using functional interfaces

With the use of functional interfaces, the command objects are not needed
anymore. The receiver object with its required action can be registered directly
with the invoker using the method reference “::”. Figure 8 and Listing 30 show
the command pattern in functional style.

Invoker <interface>>
-command | Command
+register(Command) 1
-execute() execute()
Receiver
~+actionl()
+action2()

Figure 8: The command pattern, functional approach (Listing 30)

Listing 30: The command pattern, functional approach

public interface Command {
void execute();

}

public class Invoker {
private Command command;

public void register(Command command) {
this.command = command;

}

public void execute() {
command.execute ();
}
}

public class Receiver {

public void actionl1() {
// implementation

}

public void action2() {
// implementation
}
}

26

In Listing 31 is shown how the receiver—action operation is registered with
the invoker object in functional style. It is even possible to register commands
using lambda expressions.

Listing 31: Application of the functional command pattern

public static void main(String[] args) {

Receiver receiverl = new Receiver();
Receiver receiver2 = new Receiver();

Invoker invoker = new Invoker();
invoker.register(receiverl::actionl);
invoker.execute ();
invoker.register(receiver2::action2);
invoker.execute();
invoker.register(receiver2::actionl);
invoker.execute ();

invoker.register (()->System.out.println(”"extra command”));
invoker.execute ();

invoker.register(new Receiver()->action2());
invoker.execute ();

5.4 Discussion of the approaches

The enumeration approach does not represent the command pattern properly.
Of the other approaches the functional one clearly has the most simple structure
and implementation. The Command objects are not needed anymore, as we
register the receiver with it’s action directly with the Invoker. However, when
the concrete commands contain a complex structure (attributes), then the object
oriented solution remains the best choice.

27

6 The Decorator pattern

The Decorator pattern can be applied when it is necessary to add functionality
to an object at runtime without using sub classing.

The Decorator pattern is classified as a structural pattern in the GoF catalog.
When the added functionality only consists of functions (algorithms), then the
approaches we used for the other (behavioral) patterns can also be applied.

6.1 Applying the standard object oriented pattern

Figure 9 represents the basic object oriented pattern [9]. A concrete component
of class ComponentA or ComponentB is decorated with one or more decorations (extra
functionality in the form of method addedBehavior) defined by subclasses of the
abstract class Decorator. The code is given in Listing 32.

<interface>>
Component |-component

1

operation()

ComponentA

~+operation()

Figure 9: The decorator pattern, object oriented approach (Listing 32)

ComponentB
~+operation() ~+operation()
1 1
DecoratorA DecoratorB
t-operation() foperation()
-addedBehavior() -addedBehavior()

}

}
3

public interface Component {
void operation();

public class ComponentA implements Component {
public void operation() {
// implementation

public class ComponentB implements Component {
public void operation() {

Listing 32: The strategy pattern, object oriented approach

28

// implementation
}
}

public abstract class Decorator implements Component {
private Component component;

protected Decorator(Component component) {
this.component = component;

3

public void operation() {
component.operation();
3
}

public class DecoratorA extends Decorator {

protected DecoratorA(Component component) {
super (component);

}

public void operation() {
super.operation(); // also possible in reverse order
this.addedBehavior(); // so first addedBahavior

}

private void addedBehavior () {
// implementation
}
}

public class DecoratorB extends Decorator {

protected DecoratorB(Component component) {
super (component);

}

public void operation() {
super.operation();
this.addedBehavior ();

}

private void addedBehavior() {
// implementation
3
}

A simple example how to apply the Decorator pattern is given in Listing 33.
Concrete component, A is decorated with three decorators, first with decorator
A, and then twice with decorator B.

Here, the instances of the concrete components and concrete decorators are
created directly. Usually this will be done with a factory.

29

Listing 33: Application of the object oriented decorator pattern

public static void main(String[] args) {
Component comp = new DecoratorB(
new DecoratorB(
new DecoratorA(
new ComponentA())));
comp.operation();

}

6.2 An alternative approach using an enumeration

Again, we can replace the class hierarchy by an enumeration, see Figure 10
and Listing 34. Enumeration Decoration contains a constant for each concrete
decorator that contains an implementation of the method addedBehavior. Class
Decorator is not abstract anymore. It stores the enumeration constant for the
decoration it adds.

<Linterface>>
Component |-component

1
operation()
| | l
L L
ComponentA ComponentB Decorator
X . +Decorator(Decoration, Component)
“+operation() “+operation() +operation()
1 | -decoration
<enumeration>>
Decoration
DECORATIONA
DECORATIONB
+addedBehavior()

Figure 10: The Decorator pattern, enum approach (Listing 34)

Listing 34: The decorator pattern, enum approach

public interface Component {
void operation();

3

public class ComponentA implements Component {

30

public void operation() {
// implementation
}
}

public class ComponentB implements Component {
public void operation() {
// implementation
3
}

public class Decorator implements Component {
private Component component;
private Decoration decoration;

protected Decorator(Decoration decoration, Component component) {
this.component = component;
this.decoration = decoration;

}

public void operation() {
component.operation();
decorator.addedBehavior ();
}
}

public enum Decoration {

DECORATIONA {
public void addedBehavior () {
// implementation
}
3,

DECORATIONB {
public void addedBehavior () {
// implementation
}
3

public abstract void addedBehavior();

Listing 35 shows how to apply the enum-approach of the Decorator pattern
to achieve the same results as in the object oriented approach of Listing 33.

Listing 35: Application of the enum oriented decorator pattern

public static void main(String[] args) {

Component comp = new Decorator(Decoration.DECORATIONB,
new Decorator(Decoration.DECORATIONB,
new Decorator (Decoration.DECORATIONA,
new ComponentA())));

31

comp.operation();

}

In this example we have to create a new decorator object for each decora-
tion, only to add a new enumeration constant to the concrete component. We
therefore also can chose to store all these decorations (enumeration constants)
into a collection of one Decorator object. Using the Decorator pattern becomes

easier, as shown in Listing 36.

Listing 36: Application of the enum oriented decorator pattern that uses a
list

public static void main(String[] args) {
Component comp = new Decorator(
new ComponentA(),
Decoration.DECORATIONB,
Decoration.DECORATIONB,
Decoration.DECORATIONA);

comp.operation();

This solution requires modification of the class Decorator, see Figure 11 and
Listing 37. Note that in this version it is still possible to add the decorations

one at a time, as in Listing 35.

<interface>>
Component | -component

operation()
| | ‘
Il Il
ComponentA ComponentB Decorator
. - +Decorator (Component, Decoration. ..)
-+operation() ~+operation() +operation()

*

-decorations

<enumeration>>
Decoration

DECORATIONA
DECORATIONB

+addedBehavior()

Figure 11: The Decorator pattern, list with enum approach (Listing 37)

32

Listing 37: The decorator pattern, modified Decorator class for list with
enum approach

public class Decorator implements Component {
private Component component;
private Decoration[] decorations;

protected Decorator (Component component,

Decoration ...decorations) {
this.component = component;
this.decorations = decorations;

3

public void operation() {
component.operation();
for (Decoration d : decorations) {
d.addedBehavior ();
3
}
}

6.3 Discussion of approaches

As with previous patterns the enumeration approach simplifies the class struc-
ture and implementation.

However, the object oriented approach is the most general solution. Not only
pure functions can be used as decoration, but the decoration can also contain
extra structure (i.e. attributes). An example of the Decorator pattern is the
Java Stream API (for reading and writing). For example, abstract decorator
java.io.Reader has a concrete decorator java.io.BufferedReader that adds several
attributes to implement the buffer.

The enumeration approach is less applicable in situations where structure is
added by a decoration, as they do not offer an easy way to store these attributes.
When te decorations are pure function, for example in the famous coffee example
of [4], then the enumeration and functional approach are both applicable, and
simplify the implementation.

Another (small) disadvantage of the enumeration is that the signature of the
method addedBehavior must be similar for all decorations. In the object oriented
approach method addedBehavior can have another signature in each subclass, as
the method is called from within the same subclass.

33

7 The Visitor pattern

The Visitor design pattern is used when similar operations are to be performed
on the nodes of a class hierarchy, which we will call the Element classes. If this
Element class hierarchy is relatively fixed but new operations need to be added
easily, the advocated solution is to create a second class hierarchy, to be called
the Visitor classes, with one node for every kind of operation. Each Visitor class
will contain a separate implementation for every Element class. Now adding a
new operation requires no more than adding a new Visitor class, while the
Element classes remain unchanged, but adding a new Element class requires
replacing all Visitor classes with versions having an extra implementation.

<interface>>

<interface>> Visitor

Element

visitA (ElementA)
visitB(ElementB)

accept(Visitor)

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

L Il . . TPy
ElementA ElementB Visitorl Visitor2
. . +visitA (ElementA) +visitA(ElementA)
+accept(Visitor) +accept(Visitor) +visitB(ElementB) +visitB(ElementB)

Figure 12: The Visitor pattern

Now insofar as the operations can be regarded as algorithms, it is conceivable
to repeat the solution found for the Strategy pattern, letting all operations
implement a functional interface. However, in this case it does not solve the
problem the pattern is designed for. Even if one uses functional interfaces, the
problem remains that the number of different implementations is quadratic (a
separate one for each combination of Element and Visitor) and that these must
be organized in some way without introducing a quadratic number of classes.
Therefore introducing functional interfaces here does not essentially change the
shape of the pattern; in fact, it complicates it because a separate functional
interface is needed for every element type.

In the case of the Strategy pattern, our approach did not just simplify the
code: it also provided for a better match with our mental model, because in-
tuitively an algorithm is indeed a pure function rather than a class. With the
Visitor pattern, this argument is less convincing: the operations are assumed
to have a different implementation for each Element, hence will be thought of
as methods in the Element classes rather than pure functions. This leads to
a valid criticism of the original Visitor pattern too: the operation classes are
inordinately interested in the workings of the Element classes, hence suffer from
the code smell Feature Envy [3]. And because Java lacks a mechanism like C++
friends, this requires the Element classes to provide public access to all features

34

necessary to perform the operations.

35

8 UML extension: a proposal

In Section 3 we gave a simpler solution to the problem underlying the GoF Strat-
egy pattern, using enumerations and functional abstraction. However, these
solutions are far harder to describe in UML than the classical approach. The
essence of the pattern, in our view, is the possibility of a dynamic choice between
statically defined alternatives. In the object-oriented style of Figure 1, this is
clearly visible because of the dynamically mutable association from Context to
Strategy, as opposed to the statically fixed implementation relationship between
interface Strategy and concrete classes StrategyA and StrategyB.

In Figure 2 the concrete strategies are no longer visible except as untyped
constants in the enumeration. This is because UML is entirely geared to relations
between classes, and in the simplified enum-style solution the concrete strategies
are no longer represented as classes. They are, in fact, first-class functions —
not methods. The only way to represent a first-class function in UML is to view
this as an object implementing one of the functional interfaces listed in Table 1.
However, it is very awkward to have to show this library interface in the diagram
every time a function is used.

This situation suggests that we would like to extend UML with a dedicated
notation for such first-class functions. Then in Figure 2 the enumeration ele-
ments could be explicitly linked to the functions they represent.

In order to remain as close as possible to standard UML, we propose to use
a rectangle with rounded left and right sides: a so-called ‘capsule shape’. These
do not play a role in normal class diagrams, but the shape is used in activity
diagrams to denote an activity. This does not seem to clash strongly with
the proposed use as a notation for stand-alone functions. Using this shape to
denote the functions associated with the enumeration elements, Figure 2 may
be replaced by Figure 13. We claim that this notation makes it easier to see the
dynamic choice between statically defined alternatives, which was what we set
out to do.

Context <enumeration™> STRATEGYA execute()
-strategy Strategies
-+setStrategy(Strategy) 1 ——
“FexecuteStrategy() +ezecute() STRM execute()

Figure 13: The strategy pattern, enum style (Listing 17)

Being able to model a solution is beneficial for students, because it allows
them to think about a solution in abstract terms without having to attend
every detail [1]. Furthermore, a UML diagram is beneficial in communication
with domain experts, because diagrams are far more easy to understand than
code.

36

9 Related work

It has been observed many times before that design patterns reflect a lack of
features in programming languages. The GoF patterns [9] correspond to the set
of features current in mainstream object-oriented languages such as C++ and
Java around the time of the book’s publication. Sullivan [18] showed that using
a more permissive object-oriented language would make some design patterns
disappear. Hannemann and Kiczales [10] explored expressing the GoF patterns
in AspectJ, with the result that in many cases the core part of the implementa-
tion could be abstracted into reusable code, thus creating a component rather
than a pattern.

An early proposal to exploit the new Java functional features in the context of
design patterns was made by Fusco [5, 6, 7, 8]. However, his approach is entirely
code-based and rather ad hoc: it provides one with several examples where
existing code is cleaned up and simplified, but omits any consistent methodology
and does not aid at all in the design phase.

The recent work of Heinzl and Schreibmann [11] does share our ambition
for the early introduction of lambda expressions, and proposes an extension to
UML to facilitate the design process accordingly. However, their choice of a class
symbol to represent a function is confusing: a function is not a class but an
object of type Function<P, R>. Moreover, they seem to use the same multiplicity
notation for referring both to n objects and to a single object with n attributes.
Finally, their notation blurs the essence of some design patterns: the Strategy
pattern, for instance, is about making a dynamic choice from a repertoire of
algorithms. In the description of Heinzl and Schreibmann all the algorithms are
present simultaneously as attributes, and the dynamic aspect vanishes from the
design.

37

10 Conclusions and Future work

We investigated the use of functional features for several design patterns. Our
goal was to simplify the class structure of design patterns to bring the design
more into line with the conceptual model. We have done this by removing the
inheritance structure and replacing it with an enumeration. The functions in
the concrete subclasses in the object oriented approach are collected into one
enumeration, and stored labeled with an enumeration constant.

Our approach is feasible when:

e Methods are pure functions, i.e. when they do not rely on attributes
(state). In cases where the methods rely on very simple state (only a few
attributes of simple types), then this state can be realized by passing state
as parameter. In these cases the caller of the functions is responsible for
managing the state.

e Methods are of limited complexity and size. Otherwise, for example, the
enumeration will become very large.

e The redesigned design pattern should not become more complex than the
original object oriented pattern and should support the conceptual way of
thinking.

Best suited are the patterns classified as behavioral, for example Strategy and
Template Method, as they deal with algorithms (functions). However, some
of the behavioral patterns are less suitable, for example Command and Visi-
tor. Structural patterns deal with structure, and therefore are less suited. In
some special cases, however, also structural patterns can use our approach, for
example the Decorator pattern when the decorations are pure functions.

10.1 Future work

The question which design patterns form a suitable candidate for improvement
through functional features does not seem to allow of a simple answer: as argued
in the previous section, the dichotomy between behavioral and structural pat-
terns comes close to providing a criterion, but Visitor and Decorator are notable
counterexamples. Ideally one would wish for an objective criterion pointing to
the cases where our approach adds value. One avenue to explore in this di-
rection would be the application of various quality metrics [12]. However, it
is worth pointing out that design patterns do not improve all quality aspects:
they have a purpose, for instance contributing to flexibility for certain types of
changes, but often do so by increasing the number of classes or adding a level
of indirection, all of which would deteriorate other quality metrics.

A different approach to analyzing design patterns was offered by Smith [17],
who considered them as compositions of much simpler programming ideas that
cannot be decomposed further. The structure of such compositions provides an
indication of conceptual complexity for each classical design pattern and also

38

for our alternative versions: this might lead to an objective criterion of the kind
we are looking for.

A final remark that must be made is that the possible solutions considered
here are constrained by what is possible within present versions of Java. For
instance, the interface Strategy in Listing 19 is only necessary because lambda
expressions in Java do not have a inbuilt type allowing a call to execute().
Related languages such as Scala would lead to different choices. Therefore it
would be worth while to investigate what language features would be necessary
for even simpler versions of design patterns. For example, the Singleton pattern
disappears entirely in Scala because the language offers the possibility of defining
individual objects not belonging to any class.

39

References

[1]

2]

3]

[4]

[5]

[6]

7]

18]

19]

[10]

[11]

[12]

Vladislav Georgiev Alfredov. How programming languages affect design
patterns, a comparative study of programming languages and design pat-
terns. Master’s thesis, Department of Informatics, University of Oslo, Au-
tumn 2016.

Grady Booch, James Rumbaugh, and Ivar Jacobson. The Unified Modeling
Language User Guide. Addison Wesley Longman Publishing Co., Inc.,
Redwood City, CA, USA, 1999.

Martin Fowler, Steven Fraser, Kent Beck, Bil Caputo, Tim Mackinnon,
James Newkirk, and Charlie Poole. Refactoring: Improving the Design
of Ezisting Code. Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 1999.

Elisabeth Freeman, Eric Freeman, Bert Bates, and Kathy Sierra. Head
First Design Patterns. O’ Reilly & Associates, Inc., 2004.

M. Fusco. Gang of Four Patterns in a Functional Light: Part
1. https://www.voxxed.com/2016/04/gang-fourpatterns-functional-
light-part-1/, 2016.

M. Fusco. Gang of Four Patterns in a Functional Light: Part
2. https://www.voxxed.com/2016/05/gang-fourpatterns-functional-
light-part-2/, 2016.

M. Fusco. Gang of four patterns in a functional light: Part
3. https://www.voxxed.com/2016/05/gang-fourpatterns-functional-
light-part-3/, 2016.

M. Fusco. Gang of four patterns in a functional light: Part
4. https://www.voxxed.com/2016/05/gang-fourpatterns-functional-
light-part-4/, 2016.

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design
Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley
Publishing Company, Reading, MA, USA, 1995.

Jan Hannemann and Gregor Kiczales. Design pattern implementation in
Java and AspectJ. SIGPLAN Not., 37(11):161-173, November 2002.

Steffen Heinzl and Vitaliy Schreibmann. Function references as first class
citizens in uml class modeling. In Proceedings of the 13th International
Conference on Evaluation of Novel Approaches to Software Engineering -
Volume 1: ENASE,, pages 335-342. INSTICC, SciTePress, 2018.

Nien-Lin Hsueh, Peng-Hua Chu, and William Chu. A quantitative ap-
proach for evaluating the quality of design patterns. Journal of Systems
and Software, 81(8):1430 — 1439, 2008.

40

[13] Graham Hutton. Programming in Haskell. Cambridge University Press,
New York, NY, USA, 2nd edition, 2016.

[14] Gosling J., Joy B., Steele G., Bracha G., and Buckley A. The Java Language
Specification (3rd edn). Addison-Wesley, 2014.

[15] C. Larman. Applying UML and Patterns: An Introduction to Object-
Oriented Analysis and Design and Iterative Development (3rd Edition,).
Prentice Hall PTR, Upper Saddle River, NJ, USA, 2009.

[16] B. Meyer. Object-Oriented Software Construction. Prentice-Hall PTR:
Upper Saddle River, NJ, U.S.A., 1997.

[17] Jason McC. Smith. Elemental Design Patterns. Addison-Wesley Profes-
sional, 2012.

[18] Gregory T Sullivan. Advanced programming language features for exe-
cutable design patterns: Better patterns through reflection. Lab memo
AIM-2002-005, MIT Artificial Intelligence Laboratory, 2002.

[19] B.P. Upadhyaya. Programming with Scala: Language Exploration. Under-
graduate Topics in Computer Science. Springer International Publishing,
2017.

[20] Richard Warburton. Java 8 Lambdas: Pragmatic Functional Programming.
O’Reilly Media, Inc., 1 edition, 2014.

[21] Nicholas C. Zakas. Understanding ECMAScript 6: The Definitive Guide
for JavaScript Developers. No Starch Press, San Francisco, CA, USA, 1st
edition, 2016.

41

