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1 Introduction

Facts of life like the ever increasing costs of maintenance and evolution of software, show that
requirements are not as static and �nal as they are usually treated. One requirement of pro-
bably all software systems should be a certain degree of 
exibility with respect to changes in
the remainder of the requirements, due to an inaccurate modeling of the environment or to a
changing environment. In several systems, changes in software as an answer to changes of the
requirements should be applicable during execution. According to Stankovic in [10], on-line
change capabilities will especially be needed in the �eld of real-time and embedded systems.

The recently emerged �eld of software architecture addresses the design of the overall system
structure. In our opinion, design for change should start at this level.

Software architectures are typically described as a composition of high-level connected compo-
nents ([5]). The term has often been used to indicate structures representing the development
view of a system, i.e. the high-level structure of the code (in [11] for instance, the term software
architecture is always used with this meaning).
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Figure 1: Development and Run-time view Software Architectures

In recent years, software architectures more and more describe the high-level design of the
software system as it is seen during execution, with connections representing \interact" rela-
tionships as opposed to \implements" relationships ([1]). Figure 1 shows these two usages of
software architecture in one �gure, where the \run-time view" indicates a software architecture
describing a system during execution.
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An executing software system usually shows dynamics. In an object-oriented system for
instance, objects come and go, and connections between objects may be created dynamically.
In a client-server architecture, clients are created and destroyed during execution.

Most of the literature on software architectures addresses the run-time view, but treats
software architectures as static structures. This fact is re
ected in the languages used to
describe software architectures: the dynamics of con�gurations of components and connections
are not captured in most languages ([6]). Exceptions are Darwin ([8]) and Rapide ([7]).

The dynamics of a software architecture are a prerequisite for design for change at the
architectural level.

2 Evolvable Software Architectures

The answer to inconsistency caused by changing requirements is a changing system. At the
architectural level, such a change means a higher degree of dynamics than the dynamics of a
\normally" executing system. Beside changes in the con�guration of the architecture, new kinds
of components can be introduced.

Idealistically, a change in the software architecture (representing the run-time view) can
be applied to the executing system itself in such a way that the system re
ects the changed
architecture, as is illustrated in �gure 2.
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Figure 2: Changing the Software Architecture

We can deduce the following properties for a system with on-line change possibilities at the
architectural level:

1. The software architecture is re
ected in the executable. Parts of the executable from
which components can be instantiated are traceable and replaceable. Obviously, this
property is needed to be able to induce a change in the executing system when changing
the architecture.

2. Components may be added, deleted or replaced, at execution time.

3. Bindings of components through connections occur dynamically. In other words, connec-
tions may be added, deleted or replaced at execution time.

4. Instantiation of components and connections is possible from outside the system.
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5. The functionality of components is not directly dependent of other components. Other-
wise, adding, deleting or replacing components might not be possible in the running
system.

6. It is possible to analyze properties of the system at the architectural level. Before a change
is applied, the architecture should be analyzed to guarantee that the changed system will
meet the changed requirements.

Every dynamic software architecture shows properties 2 and 3. Properties 1 and 4 are properties
of the implementation. Property 5 is a property of the software architecture. Property 6 is a
property of the combination of an architecture and an implementation.

3 Independent Functionality of Components

Some descriptions of architectural styles found in literature explicitly state (on-line) change
capacities:

� Blackboard architectures support changeability and maintainability because the indivi-
dual knowledge sources, the control algorithm and the central data structure are strictly
separated([4]).

� SPLICE ([3]), a software architecture developed for control systems, consists of indepen-
dent autonomous processes, each connected to an agent. Agents communicate by message
passing, implementing a shared data space. Thus, software functions are isolated from
each other. Actual connections between functions are established at run-time, based on
names of global data-elements. A system built according to this architecture is dynami-
cally recon�gurable.

� In MESSENGERS ([2]), messages are autonomous objects, deciding at run-time to which
node they navigate, and which tasks to perform there. They can carry new function
de�nitions to the nodes they visit. Because messages can be changed or added at run-
time, the behaviour of the system can be changed on-line.

� C2 ([9]) is a component- and message based architectural style, designed for applications
that have a graphical user interface aspect. A certain degree of independence of com-
ponents is achieved through \substrate independence": components are structured in a
hierarchy, and are unaware of components beneath them. The interface of components
(noti�cations to which a component responds, noti�cations which a component emits, re-
quests emitted by a component, and requests to which a component responds) are de�ned
independently of the functionality of components.

In the �rst two examples, direct interdependence of components is prevented by the mecha-
nism of communication through shared data. In the third example, messages are used both to
invoke functions of components (nodes), and to change their functionality. As a result, nodes
are not directly interdependent, and a mechanism to change the functionality of the system
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is available. Components in the fourth example still are interdependent, but the de�nition of
interfaces creates a certain degree of independence.

None of the examples o�ers a mechanism for on-line analysis of non-functional requirements,
such as performance.

4 Conclusion

On-line analysis and change of software systems is needed as an answer to inconsistency due to
a changing environment.

In our opinion, the starting point for the support of such systems lies in the �eld of software
architectures. Research should lead to the development of frameworks (styles, description
techniques, analysis techniques and implementation support) for systems with on-line change
capabilities. Architectural styles for these frameworks should show independence of functionality
of the components. In the implemented systems, components and connections can be added,
destroyed and replaced dynamically, from outside the system. The e�ect of changes to the
non-functional requirements of the system can be analyzed before a change is applied.
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