Beautiful JavaScript: How to guide students to create good and

elegant code

Harrie Passier and Sylvia Stuurman and Harold Pootjes

Faculty of Management, Science and Technology, Department of Computer Science, Open Universiteit Nederland,

Valkenburgerweg 177, 6419 AT Heerlen, The Netherlands

Programming is a complex task, which should be taught using authentic
exercises, with supportive information and procedural information. Within
the field of Computer Science, there are few examples of procedural infor-
mation that guide students in how to proceed while solving a problem. We
developed such guidelines for programming tasks in JavaScript, for students
who have already learned to program using an object oriented language.

Teaching JavaScript in an academic setting has advantages and disad-
vantages. The disadvantages are that the language is interpreted so there is
no compiler to check for type errors, and that the language allows many
‘awful” constructs. The advantage is that, because of those disadvantages,
programmers should consciously apply rules for ‘good’ programs, instead
of being able to rely on the errors and warnings that a compiler will raise.

In this article, we show how we guide students to develop elegant code
in JavaScript, by giving them a set of guidelines, and by advising a process
of repeated refactoring until a program fulfills all requirements. To show
that these guidelines work, we describe the development of a generic mod-
ule for client-side form validation. The process followed and the resulting
module both are valuable in an educational setting. As an example, it shows
and explains precisely to students how such a module can be developed by
following our guidelines, step by step.

Categories and Subject Descriptors: D.2.13 [Reusable Software]: Do-
main engineering—Reusable libraries; K.3.2 [Computers and Educa-
tion]: Computer and Information Science Education—Computer science
education; K.3.2 [Computers and Education]: Computer and Information
Science Education—Curriculum

General Terms: Development of professional competencies in Computer
Science, Programming guidelines

Additional Key Words and Phrases: Procedural guidelines, Programming
guidelines, Design principles, Javascript, Web Application, Client-side,
Form validation, Module pattern, Modularity

1. INTRODUCTION

Learning how to program according to general principles can be
seen as a complex task. Learning complex tasks should be based
on real-life authentic tasks [Merrill, 2002]. Students should be pro-
vided with support and guidance while solving such a task. That
guidance should tell students how to recognize an acceptable so-
lution and should provide guidance to the solution process: pro-
cedural information is required when one offers authentic tasks
to enable complex learning [Kirschner et al., 2006]. This means
that one should provide procedural information with programming
tasks when one teaches students how to program. Procedural infor-
mation specifies for learners how to perform the routine aspects of
learning tasks, and preferable takes the form of direct, ste-by-step
instruction [van Merri€nboer and Kirschner, 2013].

Offering procedural guidance, in the form of a step by step ap-
proach to problem solving, is not very common in Computer Sci-

ence education, as far as we know. We think that courses on pro-
gramming could benefit from step by step approaches.

We developed a set of guidelines to create programs in
JavaScript. The programming language Javascript has been devel-
oped within a short period of time, largely out of sight of academia.
Javascript does not encourage encapsulation or structured program-
ming, but strives to maximize flexibility, which may be a conse-
quence of the fact that it was designed to allow non-programmers
to extend web pages with logic [Richards et al., 2010]. As a re-
sult, Javascript has a number of awful and bad parts [Crockford,
2008]. When using JavaScript, it is therefore very easy to create
unstructured programs that do not satisfy general design and pro-
gramming principles; programs with, as a consequence, a low level
of reusability, understandability or adaptability.

On the other hand, Javascript has many good parts too [Crock-
ford, 2008] and it is possible to create elegant code in JavaScript,
when adhering to certain principles.

Precisely the lack of language concepts such as modularity or in-
formation hiding makes Javascript a suitable language for learning
how to program according to those principles. Students will have to
force themselves to program in a clean way, according to program-
ming principles, instead of being forced to do so by the language
and/or the compiler.

Because the language does not enforce encapsulation and does
not have easy solutions for private members or interfaces, students
are forced to consciously apply those concepts to their programs,
and as a result will become more aware of the value of the prin-
ciples of, for instance, separation of concerns, information hiding,
abstraction or modularity. As a consequence, students will get a
more profound understanding of these principles.

By using our guidelines, students should be able to write elegant
code.

As a first step in the validation of our guidelines, we have fol-
lowed them to create a module for form validation. We show that a
student may start with a program that is correct but does not comply
with the software engineering design principles, and derive, step by
step, elegant code that is easily extendible, and conforms to the de-
sign principles of software engineering.

In this paper, we describe the rules we give our students to rec-
ognize an acceptable solution, and we show the guidance for the
process toward a solution. We will show how adhering to these
guidelines leads to elegant code, by presenting a generic module
for form validation as example.

Even though there are several existing libraries for form valida-
tion, form validation is a fruitful subject when teaching students
to apply design principles as abstraction, modularity, extendability
and information hiding to JavaScript code.

1.1 Contributions

We offer a set of guidelines to derive programming code that ad-
heres to the design principles of software engineering. We show

Proceedings of the Computer Science Education Research Conference, 2014.

H. Passier et al.

how these guidelines lead to elegant code by applying them to an
example problem: client-side form validation in JavaScript.

Some of the guidance is specific for form validation or for
JavaScript, but most of the guidance is applicable to other program-
ming languages.

The resulting module and the process followed is an excellent
illustration of the fact how students could write elegant JavaScript
when they would follow the rules we set out for them. What needs
to be done, howeverm, is to validate whether the guidelines really
help them in practice.

1.2 The structure of the paper

An environment for complex learning should have the following
components [Van Merriénboer et al., 2002]:

Task description the task itself, which should be as authentic as
possible. In this case, this is the task to create a module for client-
side form validation. In section 2, we describe the general require-
ments of a form validation module to describe the task.

Supportive information may be related to the domain of the task,
or describes how students may recognize that a solution is accept-
able. In section 3, we describe both the specific rules to which a
solution for a form validation module must adhere, and general de-
sign principles that must hold for any program.

Procedural information describes how students may proceed,
which steps they should take while trying to solve the problem. In
section 4 we introduce the procedural information, in the form of a
set of step by step guidelines. We show guidelines that are specific
for this domain, as well as guidelines that apply to any program.

Part-task practice items provide exercises that help students to
reach a higher level of automation. We will not address these
(smaller) exercises in this paper.

In section 5, we show that following our guidelines indeed leads
to code that adheres to the design principles of section 3. In sec-
tion 6, we discuss related work, and finally, in section 7, we discuss
our own work, draw our conclusions and define future work.

2. TASK DESCRIPTION: REQUIREMENTS
2.1 Validation of input data

Form validation is the process of comparing data entered in a form
against specifications for these data. Common validation proce-
dures include checking for missing data (such as missing a social
security number), invalid data (such as an impossible zip-code), and
inconsistent data (such as a not existing combination of address and
zip code) [Oliveira et al., 2005]. Some of these validation checks
are obvious, such as a name - password combination. Other checks
require more complex processing, such as checking the existence
of a combination of address and zip code.

Validation of input data is needed both to keep the data stored
on the server accurate and for security reasons, for instance, to pre-
vent integer overflow and SQL injections [Pietraszek and Berghe,
2006]. The server thus must always validate any incoming data be-
fore storing them.

For usability reasons, however, it is preferable to validate entered
data on the client as well. If not, a user would have to fill out a form,
submit it, and wait for the response page that might tell the user that
some of the entries are missing or are invalid. Experiments suggest
that feedback should be given immediately after a user submits a
form (and not after having entered a single field because users ap-
pear to get confused when that happens), and should be embedded

in the form [Bargas-Avila et al., 2010]. Specifications for form en-
tries should adhere to the robustness principle [Postel, 1981], which
means that one should not be too strict on the format that the user
should adhere to, and translate the entered data into a format that
the server expects. It should be possible, for instance, to enter a zip
code both with and without a space between the numbers and the
letters, and it should be possible to enter the letters both capitalized
or not.

The four dimensions of intrinsic information quality are autho-
rization of the person who entered the data, timeliness of data en-
try, and correctness and completeness of the data entered [Ballou
and Pazer, 1985]. Authorization can only be checked on the server,
and the same applies for timeliness. For client-side form validation,
therefore, the focus is on completeness and correctness of the data
entered. Completeness means that all data needed is entered, i.e.
there are no empty but required fields; correctness means that all
these data is correct in relation to a certain specification. Correct-
ness only needs to be checked if a field is complete (either has a
value or is optional).

Authorization in the context of client-side form validation can
be considered as a check on completeness (do the fields for the
person’s name and password contain data) as well as on correctness
(are the person’s name and password entered a valid combination).

Browsers that support form features of HTMLS already validate
user input according to the type attribute (such as date). There
are even some browsers that validate user input according to the
value of the pattern attribute. In these browsers, validation using
JavaScript is not really necessary, but it is still advisable, because
the feedback browsers give is often confusing. Also, there still are
browsers that do not have this functionality, and older versions of
browsers, without this functionality, will be used for a long time.
Furthermore, browsers are not able to validate related input fields
such as street name, house number, city name, and zip code. Client-
side form validation in JavaScript thus is still necessary, and will be
necessary for the coming years.

2.2 Requirements for the solution

As we have seen, client-side form validation should focus on com-
pleteness and correctness. Completeness of an input field means
that the field, if required, is not empty. Correctness of an input field
means checking the following properties:

—Form data are received, by the script, as strings. Those strings
should be parsed to check whether the input has the expected
format (according to the robustness principle). For example, a
(Dutch) zip code is formed by a sequence of four numbers, an
optional space, and two letters.

—Is the data entered within a certain range defined by a minimal
and maximal value? For example the age of a person should be
between eighteen and hundred and twenty.

—Is the combination of data entered correctly? For example, the
street name, house number, zip code and city name entered
should be a valid combination.

Combinations of type and range will often occur, for example, an
integer within a certain range or a string value out of an enumera-
tion of strings. A variation of the third property is to require only a
minimum or maximum value (for example, a person should be 18
years or older). Of course, there is always a default minimum and
maximum: the minimum and maximum supported by JavaScript.
The last property of correctness (combination) is often validated
on the server, because one needs to look up data in a database,

Proceedings of the Computer Science Education Research Conference, Publication date: 2014.

Beautiful JavaScript : How to guide students to create good and elegant code . 3

which will in general not be available at the client-side. This falls
outside the scope of this task.

3. SUPPORTIVE INFORMATION

For each software product, there are general design principles and
programming principles. For this domain, there are specific design
principles for form validation. Of course, general knowledge on
JavaScript and HTML also falls in this category, but for the purpose
of this paper, we focus on the design principles.

3.1 General design principles

The Software Engineering Body of Knowledge [Bourque and
Fairly, 2014] contains the following software design principles:

Abstraction Abstraction is ‘a view of an object that focuses on
the information relevant to a particular purpose and ignores the re-
mainder of the information’ [Allen et al., 2009] and may consist of
removing detail (to simplify and focus attention) and to generalize
and identify the common core or essence [Kramer, 2007]. Abstrac-
tion can be used as a means to decrease complexity or to enhance
useability.

Coupling and cohesion Coupling is the interdependence among
modules, classes or functions (which should be minimized), and co-
hesion is the strength of association of the elements within a mod-
ule, class or function (which should be maximized) [Allen et al.,
2009].

Decomposition and modularization Software is divided into a
number of smaller components with well-defined interfaces. This
is usually accompanied by separation of concerns, placing differ-
ent responsibilities in different components.

Encapsulation/information hiding Internal details of an abstrac-
tion are hidden, not available to external components.

Separation of interface and implementation This can be seen as
a form of information hiding: components offer a public interface,
and hide their implementation.

Sufficiency, completeness and primitiveness To be sufficient and
complete, a software component captures the important character-
istics of an abstraction and nothing more. Primitiveness means that
simple is better than complicated.

Separation of concerns The notion of separation of concerns has
been coined by Dijkstra [Dijkstra, 1982]. A concern in software
architecture is an interest of one or more of the stakeholders of a
system, but in the expression ‘separation of concerns’, a concern is
an aspect of the system that is being designed. Separating concerns
is a means of handling complexity.

3.2 Specific design principles for form validation

For form validation in a web application, there are some specific,
generally accepted, design principles:

Server-side validation is mandatory All data must be validated
on the server, because client-side validation can easily be bypassed
and/or a user can have switched off the Javascript engine. The
server is responsible for security, and for guarding the integrity of
the stored data. Client-side form validation has a different purpose:
usability, and user experience.

Enough is enough Only those validation functions should be
performed that 1) do not need secure information from the server,
and 2) support the user with filling in a form. The first restriction
means that, for example, validation of authorization information

should not be performed at the client-side. The second restriction
means that the focus of client-side form validation should be on
user experience: clear information about the completeness and cor-
rectness of the data entered, and about the way a form should be
filled in.

Robustness principle The robustness principle [Postel, 1981]

says 'Be conservative in what you do, be liberal in what you ac-
cept from others’. A form is an interface with two faces: one to
the application software and one to the user. Both faces have dif-
ferent requirements. For example, a software function might need
a parameter of type integer, where a user might think in terms of 1,
1.00 or even ‘one’; the form should — preferably — allow the user to
enter 1, 1.00 or ‘one’, and the validation program should translate
this input into an integer.
An interface satisfies the robustness principle if 1) no rigid demands
on the user input exist, 2) automatic translation to internal repre-
sentations occurs in those cases where the data entered is of a type
that is unsuitable for the processing software, 3) the requirements
on the data to enter are clear for the user, and 4) clear feedback is
presented in cases of invalid as well as valid data (for example by
showing a green check sign near the input field). Feedback should
be presented after pressing the submit button.

Guide the user A user should be guided by implicit as well as
explicit form validation. Implicit form validation means guiding
a user by using clear labels (specifying what should be entered),
placeholders (presenting an example of what should be entered),
fieldsets with legends (grouping related fields together), and, for
example, radio buttons or drop-down lists in cases where one item,
or a limited number of items, should be chosen from an enumera-
tion (limiting the number of possible values to enter) [Bargas-Avila
et al., 2010].

Explicit form validation means that a user should be immediately
(after submitting the form) informed by a feedback message about
the validity of data entered.

Aim for reusability Reusability means that software elements
may serve for the construction of many different applica-
tions [Meyer, 1997]; reusability is an obvious principle in case of
form validation, because forms often ask the same data, as for ex-
ample name, address, zip code, city, and phone number. As a result,
the same types of validation have often to be performed.

Aim for extensibility Because variations in input data exist, the
programming code should be easily extendible (new validation
functions can be easily added) as well as adaptable (existing func-
tions can easily be changed).

3.3 Programming rules for JavaScript

We supply our students with several programming rules for
JavaScript. Examples are:

—Declare constants and variables before anything else.

—Always use the keyword var to declare a variable and the key-
word const to declare a constant.

—Use capitals for constants.
—Use object chaining if possible.

—Put related functions and variables into a module, using the mod-
ule pattern [Stefanov, 2010], and compose a public interface with
care.

These rules help students to structure their code.

Proceedings of the Computer Science Education Research Conference, Publication date: 2014.

H. Passier et al.

4. PROCEDURAL INFORMATION

For the development of a form and the associated validation func-
tions, we use a two layer architecture: 1) a GUI-layer, describing the
static aspects of a form, specified in HTMLS, and 2) a domain layer,
describing the dynamic aspects of the form, specified in Javascript.
Each of these layers have their own developing steps. A data model,
which we have to specify first, is used in both these layers.

41 The model

Before the GUI-layer and the domain layer can be developed, one
should determine which data we need from the user for this appli-
cation. To specify these data, follow these steps:

4.1.1 Specify the data that should be entered. The purpose of
this step is to determine the type for each data item. We distinguish
between string and integer (positive or negative whole numbers).

—In many cases, valid input values are limited to an enumeration.
If this is the case, specify this enumeration.

—1In case of a string with requirements on structure, specify this
structure expressed in the form a regular expression. Users are
not supposed to enter numeric values according to the specific
format they have in JavaScript. Instead, when users enter a dec-
imal or another numeric value, the input is read as a string, and
parsed against a regular expression. This allows us to adhere to
the robustness principle. Not every format can be expressed in
the form of a regular expression. In such cases, the validation
on the server-side will be more severe than the validation on the
client-side. For validation on the client-side, regular expressions
suffice.

—In case of integers, determine minimum and/or maximum values
if applicable.

—In all other cases there are no requirements on correctness, which
means that the format is ‘free-form’ text, for example, a text field
to write an opinion of a certain product.

4.1.2 Specify user guidance

—Specify user guidance for each data item, indicating how the
form element should be filled in.

—Create an example value for each item.
—Create a label for the item.

—Specity whether a value has to be entered or whether this is op-
tional.

4.2 The GuUI layer

4.2.1 Determine suitable HTMLS elements. Based on the first
step, determine for each data input a suitable HTMLS element, sat-
isfying the principles of implicit form validation. Examples are the
use of an HTML radio-button or drop-down list in case of one item
or a limited number of items out of an enumeration, or the use of
a HTMLS input element with type attribute ‘date’ in case of date
selection.

—Place a span element right to each input field. This element
will be used to display feedback, in cases of correct or incorrect
data.

—Provide each input element with the user guidance that you
have specified for the title attribute. The title attribute is
used to guide the user in determining how to fill in the input
element.

—Use the example value for the placeholder attribute.
—~Use the name for the item for the label .
—Give each input element a unique id .

—~@Give the input element the attribute required unless it is
optional.

—Finally, in cases of requirements on structure or of integer val-
ues that should be within a range, specify the corresponding val-
ues for the pattern attribute (a regular expression) or the min
and/or max attribute.

Furthermore, group items together in fieldsets and take care of
clear legends.

4.3 The domain layer

Although experienced developers may be able to design and imple-
ment code that will at once satisfy the principles, less experienced
developers, as students often are, can reach this level of design and
code only by a step by step approach in which refactoring is an
important tool.

First, we give guidance on how to achieve a working application
in this domain of form validation. Then we show the guidelines we
give for every JavaScript application to refactor it into an applica-
tion that adheres to the design principles described before.

4.3.1 Step 1: Create a form validation application. To create
a form validation application, follow the following steps:

(1) Specify and implement checking for completeness. To deter-
mine whether the form is complete, create a function that tests
whether each input element with the attribute required
has a value. Checking involves: read the data from the HTML
input element, determine whether there is an attribute
required and a value, and return false when a value is
required but absent; otherwise, return true .

(2) Specify and implement checks on correctness: depending on
the specification of correctness of each required input field,
create a function that tests whether the value conforms to these
specifications. This involves: read the data from the HTML
input element, perform validation on correctness, write a
feedback message to the belonging span element, and return
true or false . If there are no requirements specified on cor-
rectness, validating an input element returns true . If there
is no value, this function should also return true : if the check
of correctness is called, the check on completeness did tell that
the field was either optional or contained a value.

(3) Create an event handler for the submit button. This event han-
dler first checks for completeness and then for correctness of
all required fields. For now, it prints to the console whether the
form is valid or not. Here, one may also check on combinations
of values (this is outside the scope of this paper).

(4) Check the code with a tool such as JSHint. !
(5) Create a test set and test the code.

4.3.2 Step 2: Refactor the code. Unlike the rules that guide a
student in creating a form validation application (step 1), the guide-
lines for refactoring are general: these guidelines will be part of the
procedural guidance in every JavaScript application.

These guidelines will sometimes have to be followed multiple
times, depending on the results of the evaluation in the next step.
Refactoring is driven by the following steps:

Lhttp://www.jshint.com

Proceedings of the Computer Science Education Research Conference, Publication date: 2014.

Beautiful JavaScript : How to guide students to create good and elegant code . 5

(1) Remove duplicated code. If there are multiple instances of
pieces of code, create helper functions to remove the dupli-

cation.

Think of different extensions that might be needed in the fu-
ture, and check where changes would have to be applied in the
code. If such an extension needs changes in different locations,
try to restructure the code such that the extension will become
easier to apply.

2

(3) Check for cohesion within functions. Also, review the code
with respect to sufficiency, completeness and primitiveness. If
a function has more than one responsibility, split it in several

functions.

Review the code with respect to separation of concerns. Sepa-
rate the code that interacts with the DOM (this can be seen as
the controller) from the code that contains the program logic.

Create modules for the controller and the program logic.

C)

®)
(6) Review the modules with respect to encapsulation/information
hiding and separation of interface and implementation. Only
the functions that are needed outside the module should be ex-

ported; nothing else.

Review the code with respect to coupling. The model, for in-
stance, should not need to call functions from the controller;
only the other way around.

Check the code with a style checker tool such as JSHint. 2
Test the code with the same test set as implemented in step 1.

(7

®)
®

As we will see in the next section, in particular removing dupli-
cation of code and enhancing changeability and abstraction are
important tools in achieving the general design and programming
principles described in section 3.1.

4.3.3 Step 3: Evaluate, and document the design and imple-
mentation. In this step, the design and implementation should be
evaluated with respect to the general design and implementation
principles as well as to the specific principles for validation. If the
general and/or specific principles are not satisfied, the design and
implementation must be changed by refactoring, along the guide-
lines to refactor the code of step 2. Also, the code should be com-
pleted with tests and documentation. Documentation can, of course,
be written earlier, but in this step one must check whether the doc-
umentation is complete.

5. APPLYING THE PROCEDURAL INFORMATION,
FIRST ATTEMPT

In this section we show how the procedural information, described
in section 4, leads to elegant code, using an example problem. For
reasons of space, we show a small problem: a form consisting of
two input elements. Both fields are part of a form for applying for
a car insurance. The first field is a zip code field; the second field
contains the number of years the applicant has driven without an
accident.

5.1

5.1.1 Specify the data that should be entered. For the zip
code, the type of data is string . Although, each zip code is
actually one out of an enumeration, applying an enumeration is
infeasible in practice because of the huge number of zip codes.
Instead, we specify that each zip code has to satisfy a structure

The model

2http://www.jshint.com

00NN W kAW =

11

12
13
14
15
16
17
18
19
20
21
22
23

constraint: a sequence consisting of four digits, an optional space,
and two letters. To be precise, in regular expression notation, the
specification is:

[1—9\d{3}\s?[a — zA — Z]{2}

For the input field representing the number of years without
accident, the type of data is integer . Assuming a minimum value
of 0 and a maximum value of 70 years, we could specify the
type of this field as an enumeration. Again, we consider this as
impractical and specify this field as type integer with a minimum
and maximum value.

5.1.2 Specify user guidance. As user guidance for the zip
code, we specify: *The correct format for the zip code is: four num-
bers between 0 and 9, followed by a space, followed by two char-
acters (either uppercase or lowercase). Between the numbers and
the characters, you may enter a space. Two examples of the correct
format for the zip code are 1234 AB and 1234AB’. The label for
the item will be ‘Zip code’.

As user guidance for the input field representing the number of
years without accident, we specify: *The number of years without
an accident is a whole number between 0 and 90°. An example is
17 , and the name of the item will be ‘Number of years without
accident’.

Both items are required.

5.2 The Gul

5.2.1 Determine suitable HTMLS5 elements. The zip code field
is specified as an input field of type text . The placeholder attribute
shows a correct example.

The field representing the number of years without an accident
is specified as an input field of type number . The placeholder at-
tribute shows a correct example.

Both items receive the attribute required .

The HTML-code:

<label class="heading">Zip code</label>
<input id="zipcode"
class="input"
type="text"
name="zipcode"
pattern=""[1-9]\d{3}\s? [a-zA-Z]{2}$"
placeholder="1234 AB"
title="The correct format for the zip code is:
four numbers
between O and 9, followed by a space,
followed by two
characters (either uppercase or lowercase).
Between the numbers and the characters, you
may enter
a space."
required>

<label class="heading">
Number of years without accident

</label>

<input id="yearswithout"
class="input"
type="number"
name="yearsWithoutAccident"
min="0"

Proceedings of the Computer Science Education Research Conference, Publication date: 2014.

24
25
26
27
28
29

[N e R R N R S

—_ = =
N - O O

13
14
15

[S R S

H. Passier et al.

max="70"
placeholder="17"
title="The number of years without an accident is
a whole number between O and 70."
required>

Notice that each input element contains all information needed
for validation, i.e. the value to validate and the specifications of
completeness and of correctness, represented by the values of the
attributes pattern,min and max . The responsibility of the script
is to validate whether input of the user satisfies the restrictions spec-
ified in HTML; the responsibility of HTML is to specify which kind
of input is asked for.

5.3 The JavaScript code

In this section, we follow the guidelines presented in subsec-
tion 4.3, to show how students will achieve an elegant, flexible form
validation module.

5.3.1 Create a form validation application. To illustrate how
the refactoring guidelines work, we start with a ‘naive’ implemen-
tation, with a validating function for each of the form items.

First, we specify a function to check for completeness. To do this,
we define a function to check the completeness of a single item, that
writes a message in its feedback field if a value is missing. We use
the JavaScript library jQuery. Here, we show how we declare all
constants at the top of the code; in the next pieces of code, we omit
the constants we already showed, for reasons of space. Likewise,
we do not show tests and documentation.

const CLASS_FEEDBACK = ".feedback",
INVALID = "invalid",
MISSING = "You probably forgot this entry",
REQUIRED = "required",
SUBMIT = "#submit",
VALID = "vyalid",;

function isComplete(el) {

var fbField = el.next(CLASS_FEEDBACK),

complete = !el.prop(REQUIRED) || el.val();

if (!complete) {

fbField.removeClass(VALID) .addClass (INVALID) .html(

MISSING);

}

return complete;

}

Notice that the expression in line 10 describes exactly the defi-
nition of completeness, i.e. if a field is required, then there should
be a value entered. To test on correctness of the zip code we write
a function that returns true if there is a value that conforms to the
regular expression specified by the pattern, or if there is no value.
The function returns false when the value does not conform to
the specification. We only show the constants that we did not define
before.

const OK = "✓",
PATTERN = "pattern",
TITLE = "title",

ZIPCODE = "#zipcode";
function zipCodeIsCorrect() {
var isCorrect = true,

13
14
15
16

17
18

19
20
21
22

0N AN N R W=

[e T S Sy S
AW —= O 0

17

18
19
20
21

[NNV I SOV SR

element = $(ZIPCODE),
fbField = element.next(CLASS_FEEDBACK),
value = element.val(),
pattern = element.attr (PATTERN),
regex = new RegExp(pattern),
title = element.attr(TITLE);
if (value) {
isCorrect = regex.test(value);

if (isCorrect) {
fbField.removeClass (INVALID) .addClass (VALID) .html(
0K) ;
} else {
fbField.removeClass(VALID) .addClass (INVALID) .html(
title);
}
}
return isCorrect;

}

Because of the specification of the HTML input elements, the
code of other event handlers for validating correctness against a
pattern is almost the same. Most of the code could be copied and
only the id would have to be changed (which means we already
see a reason to refactor later).

The implementation of the event handler validating the number
of years without an accident could be as follows:

const MAX =
MIN = "min",
YEARSWITHOUT = "#yearsWithoutAccident";
function yearsWithoutAccidentIsCorrect() {

"max",

var isCorrect = true,

element = $(YEARSWITHOUT),

fbField = element.next(CLASS_FEEDBACK),

value = parseInt(element.val()),

min = element.attr(MIN) || Number.MIN_VALUE,

max = element.attr(MAX) || Number.MAX_VALUE,
title = element.attr(TITLE);
if (value) {

isCorrect = value >= min && value <= max;

if (isCorrect) {
fbField.removeClass (INVALID) .addClass(VALID) .html(
0K) ;
} else {
fbField.removeClass (VALID) .addClass (INVALID) .html(
title);
}
}
return isCorrect;

}

At last, we create an event handler for the submit button, that
prevents the browser from submitting the form, and checks whether
the input is complete and correct. The application is now complete
(apart from the fact that we do not include the code for the Ajax call
to the server in the case when the input is complete and correct).

const CLICK = "click";

$(document) .ready(function () {
$(SUBMIT) .on(CLICK, isSubmittable);

B

function isSubmittable(event) {

Proceedings of the Computer Science Education Research Conference, Publication date: 2014.

10
11

12
13

14
15

~N O R W=

o0

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

Beautiful JavaScript : How to guide students to create good and elegant code . 7

isComplete ($(ZIPCODE)),
isComplete ($(

var zipcodeComplete =
yearsWithoutAccidentComplete =
YEARSWITHOUT)),
complete = zipcodeComplete &&
yearsWithoutAccidentComplete,
zipcodeCorrect = zipCodeIsCorrect(),
yearsWithoutAccidentCorrect =
yearsWithoutAccidentIsCorrect(),
correct = zipcodeCorrect &&
yearsWithoutAccidentCorrect;
event.preventDefault();
return complete && correct;

}

5.4 Refactor the code

When reviewing the Java Script code from the previous subsection,
it is clear that a number of general as well as specific principles are
not sufficiently met. We will follow the guidelines to improve our
code.

5.4.1 Remove duplicated code. The most obvious occurence
of duplication is the handling of the feedback field. The guideline
tells us to create a helper function. This function should receive
information about the class (valid or invalid), and about the mes-
sage that should be shown. To transfer this information, we create
a constructor Message for message objects (line 1), and a func-
tion writeMessage that receives a message object and an element
to write to (line 5). We also write a function handleMessage that
creates the right message, based on the value of correct (line 13).

function Message (valid, feedback) {
this.valid = valid;
this.feedback = feedback;
}
function writeMessage(field, message) {
if (message.valid) {
field.removeClass (INVALID) .addClass (VALID) .html(
message . feedback) ;
}
else {
field.removeClass(VALID) .addClass (INVALID) .html(
message.feedback) ;
}
}
function handleMessage(correct, field, errorString) {
var message = new Message(true, 0K);
if (!correct) {
message.valid = false;
message.feedback = errorString;
}
writeMessage(field, message);
}
function isComplete(el) {
var fbField = el.next(CLASS_FEEDBACK),
complete = !el.prop(REQUIRED) || el.val(),
if (!complete) {
handleMessage (complete, fbField, MISSING);
}
return complete;
}
function zipCodeIsCorrect() {
var isCorrect = true,

31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56

Nl RN e Y O N

e e e e
NN R W= O

17
18
19
20
21
22

element = $(ZIPCODE),
fbField = element.next(CLASS_FEEDBACK),
value = element.val(),
pattern = element.attr (PATTERN),
regex = new RegExp(pattern),
title = element.attr(TITLE);
if (value) {
isCorrect = regex.test(value);
handleMessage(isCorrect, fbField, title);
}
return isCorrect;

}
function yearsWithoutAccidentIsCorrect() {
var isCorrect = true,

element = $(YEARSWITHOUT),
fbField = element.next(CLASS_FEEDBACK),
value = parseInt(element.val()),
min = element.attr(MIN) || Number.MIN_VALUE,
max = element.attr(MAX) || Number.MAX_VALUE,
title = element.attr (TITLE);
if (value) {
isCorrect = value >= min && value <= max;

handleMessage(isCorrect, fbField, title);
}
return isCorrect;

}

In lines 25 and 39, we now see a call to the function
handleMessage instead of two similar pieces of code that change
the feedback field directly.

5.4.2 Review changes in case of extensions. The first possible
extension that springs to mind, is to add another item to the form. In
the application as it has been structured at this moment, a separate
function should be written for each item. It would be nice if the
application could be used for every form; not just for this particular
one.

An input value is either a number (for which a range might be
set) or a text which might have to obey certain rules. This means
that there will be two general validating functions:

function isValidAgainstRegex(element) {
var isCorrect = true,

fbField = element.next (CLASS_FEEDBACK),
value = element.val(),
pattern = element.attr (PATTERN),
regex = new RegExp(pattern),
title = element.attr(TITLE);
if (value) {
isCorrect = regex.test(value);

handleMessage (isCorrect, fbField, title);
}
return isCorrect;

}

function isValidNumber (element) {
var isCorrect = true,

fbField = element.next(CLASS_FEEDBACK),

value = parseInt(element.val()),

min = element.attr(MIN) || Number.MIN_VALUE,
max = element.attr(MAX) || Number.MAX_VALUE,
title = element.attr (TITLE);

if (value) {

Proceedings of the Computer Science Education Research Conference, Publication date: 2014.

23
24
25
26
27

0N NN BN~

I T T e S e Y
0NN AW~ OO

0NN AW~

e e e el
NN R LW = OO

8 . H. Passier et al.
isCorrect = isValid = value >= min && value <= max;
handleMessage (isCorrect, fbField, title);
¥
return isCorrect;

}

We would like to rewrite isSubmittable in such a way that we
can call one and the same function for each input. Note that, here,
isComplete and isCorrect have side-effects to show feedback,
and that the side-effect of isCorrect is only needed when the
input is complete.

const INPUTS = "input:not (#sumbit)";

function isSubmittable(event) {
var complete = true,
correct = true;
event.preventDefault();
$ (INPUTS) .each(function(index, element) {
if (!isComplete($(element))) {
complete = false;
}
else {
if (!isCorrect($(element))) {
correct = false;
}
}
B
return complete && correct;

}

This means that we have to implement a function isCorrect ,
which chooses, depending on the type of an item, which correct-
ness checking function to use.

function isCorrect (element) {
var res = true;
switch (element.attr(TYPE)) {
case RANGE :
case NUMBER : {

res = isValidNumber (element) ;
break;

}

default : {

if (element.attr (PATTERN)) {
res = isValidAgainstRegex(element);
}
break;
}
}

return res;

}

5.4.3 Check for cohesion, sufficiency, completeness and prim-
itiveness. With respect to cohesion: isValidAgainstRegex and
isValidNumber write feedback as a side-effect. This has a neg-
ative effect on primitiveness: those functions could be given less
responsibilities. It is not clear where we should write the feedback,
so we postpone that decision until a later step in the refactoring.

For now, the application seems to be sufficient and complete with
respect to various form items. One exception is that we assumed
that every item with type range involves integers, meaning that
the attribute step has the default value of 1. That attribute may

O 00 1 O\ W W=

also have a value of, for instance, 0.5 or 0.1. In that case, we would
need another validating function, and isCorrect would have to
be adapted. We will leave this for now, but remark that the set of
guidelines help us in observing such an extension, which would
make the validation module more generally usable.

5.4.4 Review with respect to separation of concerns. The sep-
aration between the HTML and the JavaScript is clean: in the HTML,
the type of each input item is specified, and in some cases a mini-
mum, maximum, or a pattern is specified as well. Also, the HTML
specifies whether an item should be given a value. In the script, a
validation function is chosen based on the specifications, and the
required items are checked on the presence of a value.

Within the JavaScript, however, there is no separation of con-
cerns. The first action could be to divide the code into two files.
One file, controller. js, contains everything that addresses the
DOM (changing the DOM, binding event handlers), while the other
file, validator. js, contains the validating functionality.

This guideline also solves the problem we faced: writing the
feedback to the DOM should be in controller.js . Because
isSubmittable is an event handler for the submit button, this is
the logical place to write the feedback. Instead of having the vali-
dating functions call writeMessage , the validating functions now
return a boolean: the validating functions now only do what their
name suggest: they validate.

The functions in validate.js now have no side-effects;
the only function with a side-effect is isSubmittable in
controller. js, and the only purpose of that function is to have
side-effects: to give feedback to the user, and, if the form is com-
plete and correct, to send the form to the server. We might decide
for a different name for this function, to show that it has side-
effects, but for now, we leave the name as it is. As a bonus, we
now do not need the constructor for Message objects anymore.

The file validator. js is as follows:

const MAX = "max",
MIN = "min",
NUMBER = "number",
PATTERN = "pattern",
RANGE = "range",
REQUIRED = "required",
TYPE = "type";

function isComplete(el) {
return complete = !el.prop(REQUIRED)
}

|l el.val();

function isCorrect (element) {
var correct = true;
switch (element.attr(TYPE)) {
case RANGE :
case NUMBER : {
correct = isValidNumber (element);
break;
}
default : {
if (element.attr (PATTERN)) {
correct = isValidAgainstRegex(element) ;
}
break;
}
}

return correct;

Proceedings of the Computer Science Education Research Conference, Publication date: 2014.

29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

o=l e R L

OO R — = s
N = O Voo IO Wn kWD — OO

23
24
25
26
27
28
29
30
31
32
33

Beautiful JavaScript : How to guide students to create good and elegant code . 9

function isValidAgainstRegex(element) {
var isValid = true,

value = element.val(),
pattern = element.attr (PATTERN),
regex = new RegExp(pattern);

if (value) {

isValid = regex.test(value);
}
return isValid;

}

function isValidNumber(element) {
var isValid = true,

value = parseInt(element.val()),
min = element.attr(MIN) || Number.MIN_VALUE,
max = element.attr (MAX) || Number.MAX_VALUE;

if (value) {
isValid= value >= min && value <= max;
¥

return isValid;

}

If, in the future, more validating functions are required, the only
function that will require a change is the function isCorrect . An
alternative is to specify the kind of validation that is required in
HTML.

The file controller. js is as follows:

const CLASS_FEEDBACK = ".feedback",
CLICK = "click",
INPUTS = "input:not (#sumbit)",
INVALID = "invalid",
MISSING = "You probably forgot this entry",
[0) = "✓",
SUBMIT = "#submit",
TITLE = "title",
VALID = "valid";

$(document) .ready (function () {
$(SUBMIT) .on(CLICK, isSubmittable);
b;

function isSubmittable(event) {
event.preventDefault();
$ (INPUTS) .each(function(index, element) {
var el = $(element),
feedbackEl = el.next(CLASS_FEEDBACK) ;
if (!isComplete(el)) {
writeMessage(false, feedbackEl, MISSING);
}
else {
if (isCorrect(el)) {
writeMessage(true, feedbackEl, 0K);
// send form to server
}
else {
writeMessage(false, feedbackEl, el.attr(TITLE));
}
}
s
}

34
35
36
37

38
39
40

41
4

0N AN N RN =

=)

function writeMessage(valid, field, message) {
if (valid) {
field.removeClass (INVALID) .addClass (VALID) .html(
message) ;
}
else {
field.removeClass(VALID) .addClass (INVALID) .html(
message) ;

5.4.5 Create modules. Now, it is easy to create modules.
The only functions that the controller needs of the validator are
isComplete and isCorrect . The public API thus only consists
of those functions.

var validator = (function (){

// private

const MAX = "max",
MIN = "min",
NUMBER = "number",
PATTERN = "pattern",
RANGE = "range",
REQUIRED = '"required",
TYPE = "type";

var isComplete = function(el) {
return complete = !el.prop(REQUIRED) || el.val();
},

isCorrect = function(element) {
var correct = true;
switch (element.attr(TYPE)) {

case RANGE :

case NUMBER : {
correct = isValidNumber (element);
break;

}

default : {

if (element.attr (PATTERN)) {

correct = isValidAgainstRegex(element);
}
break;
}
}
return correct;
1,
isValidAgainstRegex = function(element) {

var isValid = true,

value = element.val(),
pattern = element.attr (PATTERN),
regex = new RegExp(pattern);

if (value) {

isValid = regex.test(value);
}
return isValid;

},

isValidNumber = function(element) {
var isValid = true,

Proceedings of the Computer Science Education Research Conference, Publication date: 2014.

46
47
48
49
50
51
52
53
54
55
56
57
58
59

0NN AW~

DO DD DD B DN DN DD DD = e e e e e e e e
NN LW = OOV WD~ OO

28
29
30
31
32
33
34

35
36
37

38
39
40
41
42

10 . H. Passier et al.
value = parselnt(element.val()),
min = element.attr (MIN) || Number.MIN_VALUE,
max = element.attr(MAX) || Number.MAX_VALUE;

if (value) {
isValid= value >= min && value <= max;
}
return isValid;
}
// public API
return {
isComplete: isComplete,
isCorrect:
¥
}O);

isCorrect

The controller may also be changed into a module, and does not
have to reveal a public API.

var controller = (function (){

// private
const CLASS_FEEDBACK = ".feedback",
CLICK = "click",
INPUTS = "input:not (#sumbit)",
INVALID = "invalid",
MISSING = "You probably forgot this entry",
0K = "✓",
SUBMIT = "#submit",
TITLE = "title",
VALID = "valid";

var isSubmittable = function(event) {
event.preventDefault();
$ (INPUTS) .each(function(index, element) {
var el = $(element),
feedbackEl = el.next(CLASS_FEEDBACK);
if (!validator.isComplete(el)) {
writeMessage(false, feedbackEl, MISSING);
}
else {
if (validator.isCorrect(el)) {
writeMessage(true, feedbackEl, OK);
// send form to server
}
else {
writeMessage(false, feedbackEl, el.attr(TITLE))
5
}
}
B;
3,
writeMessage =
if (valid) {
field.removeClass (INVALID) .addClass (VALID) .html(
message) ;

function(valid, field, message) {

}
else {
field.removeClass(VALID) .addClass (INVALID) .html(
message) ;

$(document) .ready(function () {
$ (SUBMIT) .on(CLICK, isSubmittable);

43

B;

44 130);

5.4.6 Review information hiding and separation of interface
and implementation. By encapsulating the code into modules, and
by providing the smallest possible public API, our code already
conforms to these rules.

5.4.7 Review the code with respect to coupling. In this case,
the controller calls two functions of the public API of the validator;
the validator does not need anything of the controller.

5.5 Evaluate and document

As a last step, we now review our code with respect to the design
rules of subsection 3.1.

Abstraction The validator exports two abstract functions, and
the controller does not refer to individual form items. The level
of abstraction is high.

Coupling and cohesion The level of coupling is low: the con-
troller uses two functions of the public API of the validator, and
that is all coupling there is between the JavaScript files. There is
coupling between the HTML and the script: the script relies on the
type,min,max,required, and pattern attributes in the HTML.
However, this is all within the HTML standard. The level of cohe-
sion of the validator is high.

Decomposition and modularization The level of decomposition
and modularization is high.

Encapsulation/information hiding The level of encapsulation
and information hiding is high, because the public API of the val-
idator contains only two functions. The functions of the controller
cannot be reached from outside because the code is encapsulated in
a module.

Separation of interface and implementation There is a clear
separation, in the validator, between the interface (the public API)
and the implementation.

Sufficiency, completeness and primitiveness The level of primi-
tiveness is high, because each function now carries one responsibil-
ity. The only exception is the function isSubmittable, in which
feedback is written as a side-effect. We think that is allowable, be-
cause checking whether the form may be submitted to the server
and giving feedback if that is not the case is so closely related. The
code is sufficient for form application. With respect to complete-
ness, the code should be extended for ranges with steps other than
1.

Separation of concerns The level of separation of concerns is
high.

Specific design principles From the specific design principles
for form validation, the first four (i.e. server-side validation is
obliged, enough is enough, robustness, and guide the user) are met
or could be easily met. The last one, aim for reusability, is met also:
this code is applicable to all forms (with the proposed extension
with respect to steps other than 1).

6. RELATED WORK

Form validation using a specification declared in the HTML is not
new. Powerforms [Brabrand et al., 2000], for instance, specifies ad-
ditions to HTML that are parsed by JavaScript. There are more li-
braries for client-side form validation, such as the jQuery Valida-
tion plugin. Here, form validation is reduced to specifying which

Proceedings of the Computer Science Education Research Conference, Publication date: 2014.

Beautiful JavaScript : How to guide students to create good and elegant code . 11

fields have to be validated against which rules and, if a rule is bro-
ken, which feedback message should be presented. There are about
fifteen different validation functions to choose from (for instance,
email, creditcard or url). Our feedback library, while much barer, is
simpler with respect to validating functions: all information is de-
clared in the HTML, using standard attributes. However, our focus
is not on the library itself. We have tried to show that the guidelines
we give our students lead to elegant code, even if the first attempt
is not really elegant.

One example of procedural guidelines on programming are de-
tailed guidelines for functional programming [Felleisen, 2001]. We
use similar guidelines for creating functions; we have not shown
these guidelines here. The guidelines we present here are meant for
event driven programs in JavaScript with a GUI in HTML.

Another example of procedural guidelines for programming is
the STREAM framework [Caspersen and Kolling, 2009], a step by
step approach intended for novices learning OO-programming. The
approach is based on stepwise improvement consisting of exten-
sion (extending the specification to cover more use cases), refine-
ment (refining abstract code to executable code), and restructuring
(improving non-functional aspects of a solution without altering its
observable behavior). The arguments for the necessity of procedu-
ral guidelines for students that the authors give are in line with our
own observations. Our approach is geared toward more advanced
programmers. Our guidelines are more general applicable, whereas
the STREAM guidelines are specific for OO programs. Our guide-
lines are less specific, but we offer students a means to check their
code with the principles that the code should adhere to when good
enough. Students who did learn to program using the STREAM
method, could learn advanced programming using our guidelines.

As far as we know, there are no other studies on the role of pro-
cedural information for the complex task of programming web ap-
plications and event driven programming.

7. DISCUSSION, CONCLUSION AND FUTURE
WORK

Procedural information that help students solve complex problems
is not available for many complex tasks in the domain of Computer
Science. We developed such information for the task of program-
ming in JavaScript. Programming in general is a complex task, and
programming in JavaScript even more so, because there is no com-
piler to detect some types of mistakes, and the language allows one
to write code that is hardly maintainable and difficult to analyse.

To validate the guidelines that we developed, we used them in
an example task. We have described how our guidelines may help
students to derive maintainable code that adheres to the software
engineering principles. We have shown that sometimes a refactor-
ing step may warn the student that there is a problem with the code,
but does not give guidance in how to solve the problem. In such a
case, one of the next steps may give more guidance to the solution.

We think that we should create step by step guidelines for the
many complex tasks that we prepare our students for. This set of
guidelines is one example. In our opinion, these guidelines are
not simple-to-follow recipes that guarantee success. Instead, these
guidelines help students to divide problems into smaller ones, to
stimulate an attitude of first thinking, then doing.

The work that we have done not only shows that our guidelines
might be helpful; we have also created an example case to explain
our students how to use these guidelines.

What needs to be done, however, is to monitor whether these
guidelines really help students. It is clear that the guidelines may
guide students toward a good enough solution, but we will have

to check whether they really do so in practice. We are currently
working on a setup that will allow us to validate the working of
these guidelines. In a situation of distance learning, we might use
the Think aloud method in a session in our electronic learning en-
vironment, which allows us to record what the students does and
says.

In the far future, we would like to work on tools to check au-
tomatically if a solution is good enough. Our guidelines could be
used to provide meaningful feedback when a solution is not yet
acceptable.

REFERENCES

Allen, J., Barnum, S., Ellison, R., McGraw, G., and Mead, N. (2009). Soft-
ware Security Engineering. Addison-Wesley Professional.

Ballou, D. and Pazer, H. (1985). Modeling data and process quality in
multi-input, multi-output information system. Management Science,
31(2):150162.

Bargas-Avila, J., Brenzikofer, O., Roth, S., Tuch, A., Orsini, S., and Opwis,
K. (2010). Simple but crucial user interfaces in the world wide web:
introducing 20 guidelines for usable web form design. User Interfaces,
pages 1-10.

Bourque, P. and Fairly, R. E., editors (2014). Guide to the Software Engi-
neering Body of Knowledge version 3. IEEE Computer Society.

Brabrand, C., Mgller, A., Ricky, M., and Schwartzbach, M. 1. (2000). Pow-
erforms: Declarative client-side form field validation. World Wide Web,
3(4):205-214.

Caspersen, M. E. and Kolling, M. (2009). Stream: A first programming
process. ACM Transactions on Computing Education (TOCE), 9(1).

Crockford, D. (2008). JavaScript: The Good Parts. O’Reilly/Yahoo! Inc.
First Edition.

Dijkstra, E. W. (1982). On the role of scientific thought. In Selected Writ-
ings on Computing: A Personal Perspective, pages 60—66. Springer.

Felleisen, M. (2001). How to Design Programs: an introduction to pro-
gramming and computing. MIT Press.

Kirschner, P. A., Sweller, J., and Clark, R. E. (2006). Why minimal guid-
ance during instruction does not work: An analysis of the failure of
constructivist, discovery, problem-based, experiential, and inquiry-based
teaching. Educational psychologist, 41(2):75-86.

Kramer, J. (2007). Is abstraction the key to computing? Communications
of the ACM, 50(4):36-42.

Merrill, M. D. (2002). First principles of instruction. Educational technol-
ogy research and development, 50(3):43-59.

Meyer, B. (1997). Object-Oriented Software Construction. Prentice Hall,
Upper Saddle River, New Jersey, USA, second edition.

Oliveira, P., Rodrigues, F., and Henriques, P. R. (2005). A formal definition
of data quality problems. In International Conference on Information
Quality ICIQ, pages 14-24, Cambridge, Massachusstes, USA. MIT In-
formation Quality (MITIQ).

Pietraszek, T. and Berghe, C. V. (2006). Defending against injection at-
tacks through context-sensitive string evaluation. In Recent Advances in
Intrusion Detection, volume 3858 of Lecture Notes in Computer Science,
pages 124-145. Springer.

Postel, J. (1981). Request for comments 793-transmission control protocol.

Richards, G., Lebresne, S., Burg, B., and Vitek, J. (2010). An analysis
of the dynamic behavior of javascript programs. ACM Sigplan Notices,
45(6):1-12.

Stefanov, S. (2010). JavaScript patterns. O’Reilly Media, Sebastopol, Cal-
ifornia, USA.

Proceedings of the Computer Science Education Research Conference, Publication date: 2014.

12 o H. Passier et al.

Van Merriénboer, J. J., Clark, R. E., and De Croock, M. B. (2002).
Blueprints for complex learning: The 4c/id-model. Educational Tech-
nology Research and Development, 50(2):39-61.

van Merriénboer, J. J. and Kirschner, P. A. (2013). Ten Steps to Complex
Learning, a systematic appraoch to four-component instructional design.
Taylor & Francis, New York, NY, USA, second edition.

Proceedings of the Computer Science Education Research Conference, Publication date: 2014.

