
The Design of Mobile Apps: what and how to teach?
SYLVIA STUURMAN and BERNARD E. VAN GASTEL and HARRIE J. M. PASSIER
Open Universiteit Nederland

Mobile applications (or mobile apps or apps for short) gain importance, and
will, as is our expectation, find a place in the curricula of Computer Sci-
ence and Software Engineering. In books, courses and tutorials, not much
attention has been given to the design of mobile applications.

In this paper, we describe the anatomy of mobile apps, using Android as
an example. Based on this anatomy, we offer an inventarization of modeling
techniques that can be applied to adequately design mobile apps. Some of
these modeling techniques are already taught in most curricula, albeit in
different courses. A modeling technique that is useful for several aspects
of mobile apps is the Interaction Flow Modeling Language (IFML). This
modeling technique would have to be introduced when one would like to
teach students how to design apps.

We also describe which strategies can be followed when introducing mo-
bile apps in a curriculum: as a subject of a course, together with knowl-
edge of the concepts and the necessary modeling techniques, or as exam-
ples in different courses. We discuss advantages and disadvantages of both
approaches.

Categories and Subject Descriptors: D.2.10 [Software Engineering]:
Design—Representation; K.3.2 [Computers and Education]: Computer
and Information Science Education—Computer science education; K.3.2
[Computers and Education]: Computer and Information Science Educa-
tion—Curriculum
General Terms: Designing Mobile Applications, Computer Science curricu-
lum

Additional Key Words and Phrases: Android, Universal Modeling Lan-
guage, UML, Interaction Flow Modeling Language, IFML, Curriculum

1. INTRODUCTION

In courses on Software Design, the domain that is often (implic-
itly) presumed, is the domain of business applications, running on
a server. This is reflected in the examples that are used in text-
books [Evans 2004; Larman 2012].

The omnipresence of mobile applications (or apps for short)
shows that the dominance of server-side applications is decreas-
ing. More and more, apps are introduced in Computer Science cur-
ricula. Though universities teach knowledge that is as independent
of specific technologies as possible, it is inevitable to use specific
technologies to teach certain subjects. Both teachers and students
prefer recent technology. Because of these reasons, we foresee a
shift from the implicit domain of business applications to the do-
main of mobile applications.

Other reasons are the fact that the user interface of mobile
apps has more possibilities than input through the keyboard or the
mouse, that mobile applications are often part of a client-server or a
peer-to-peer application, that there is hardware involved with mul-
tiple sensors, that there is limited memory and there are restrictions
with respect to power usage, that data handling is different than the
traditional file-system-model, that interaction between mobile ap-
plications is common, and that there are programming issues such
as the life cycle of applications, designing for multiple platforms,
or security and privacy [Gordon 2013]. In short, mobile applica-

tions are rich and complex, and thus suitable to teach many aspects
of Computer Science.

There are more reasons. Because of the competitive market it is
extremely important in mobile applications to optimize for change-
ability and adaptability, and therefore mobile applications lend
themselves to show the importance of this quality aspect to stu-
dents. Mobile applications are event-driven, in contrast to server-
side applications as they are taught. And not the least important,
learning to program mobile applications motivates students.

The implicitly presumed domain of applications not only influ-
ences the examples that will be used, but also the modeling tech-
niques that will be taught. Teaching suitable modeling techniques
for the design of mobile applications is important because of the
aspects we mentioned before, such as the importance of designing
for changeability.

We pose two questions. The first question is: which modeling
techniques does one need to design mobile applications? The sec-
ond question is: if one would like to integrate mobile applications
into the curriculum, two strategies may be used to do so. On the
one hand, one may use apps as examples in existing courses; on the
other hand, apps might become the focus point, to teach concepts
and modeling techniques necessary to design apps. What are the
advantages and disadvantages of both approaches?

With respect to the first question, we describe the anatomy of
mobile apps, using Android as an example. Based on these con-
cepts, we make an inventarization of modeling techniques. Our
contribution is a proposal for a set of existing modeling techniques
that are suitable to model different aspects of a modern mobile
application. We do not restrict ourselves to UML, but also take
other approaches into account. Knowing these techniques, a stu-
dent could model the different aspects of a mobile application.

With respect to the second question, we describe which strategy
one should choose if one sees designing apps as a complex task,
which integrates knowledge from several areas and asks for several
skills. We check existing curriculum guidelines for Computer Sci-
ence and Software Engineering with respect to the two strategies,
and discuss advantages and disadvantages.

This paper is organized as follows: In Section 2, we describe
the anatomy of a mobile application. We will use Android apps as
an example. Section 3 shows which current modeling techniques
might be used to model the aspects of apps that we described in
Section 2. In Section 4, we describe advantages and disadvantages
of the two strategies to integrate modeling apps in the curriculum.
In Section 5, we describe related work, and show the difference
with our work. We summarize our conclusions in Section 6.

2. THE ANATOMY OF ANDROID APPS

Most mobile platforms support similar constructs though the syn-
tax varies. We use the Android platform to illustrate aspects of mo-
bile applications that deserve attention during the design phase. We
choose Android because its open source nature is ideal to study the
inner workings.

Proceedings of the Computer Science Education Research Conference, 2014.



2 • S. Stuurman et al.

An Android app runs on the Android operating system in its own
Java virtual machine, within its own process, in isolation from other
apps.

2.1 Elements

Android apps consist of four types of building blocks:

Activities An activity is associated with a single screen. In texts
on Android development, ‘design’ is often a synonym for the de-
sign of the graphical user interface of each screen of an app 1 Here,
we focus more on the design of the functionality of each activity
and on the functionality of its user interface.

Services Services run in the background: there is no associated
screen. An activity may use a service. Services may perform long-
running operations or perform work for remote processes.

Content providers A content provider manages data. Data may
be stored locally (either private for the app or shared with several
apps) or on the web. Data may be stored in a file system or in a
database. When an application allows other applications to read
data, access is through the content provider (unless the data has
a simple structure and is private for the app). Activities or services
also only read or write data through a content provider.

Broadcast receivers Broadcast receivers respond to system-
wide messages (for instance about a low battery, or an announce-
ment that the screen has been turned-off).

2.2 Communication

Activities, services and broadcast receivers are activated through
an intent. An intent is an asynchronously handled message carry-
ing a characterization of the action to perform (for instance ‘start’,
or ‘view’, or ‘send’), and it may carry an URI or data to act upon.
Intents may be anonymous, in which case the operating system
searches for an activity or service or broadcast receiver in an app
that is able to perform the action, or it may be direct, which means
it is directed to a specific activity, service or broadcast receiver. A
result of an intent is delivered in the form of a callback.

Activity

Service

Broadcast
receiver

Content
provider

Data

component

association

intent

Fig. 1. The components of an Android app

Figure 1 shows these four types of components. Content
providers are the only components that should fetch or save data.

1Android Developer Guides, Design and Documentation.https://developer.
android.com/

Activities, services and broadcast receivers may communicate with
content providers through ‘ordinary’ associations (depicted as solid
arrows). Activities, services and broadcast receivers may commu-
nicate with each other through intents (depicted as dashed arrows).
The system may contact broadcast receivers (for notices) and ac-
tivities (for instance to start an application, or to ask it to show a
video), also through intents. Intents may be both directed or anony-
mous (we have no way to show that in the figure). Intents may be
used within one app or between apps. Activities and services may
thus send intents to the system or to other activities and services
within the app; broadcast receivers, activities and services may re-
ceive intents from the system.

2.3 Life cycle

Activities and services go through a life cycle, and each of the tran-
sitions of one stage in the life cycle to another stage is associated
with an event. Programming an activity or a service thus means in
the first place that one specifies what should be done when each
event takes place.

Shutdown

Created

StartedRestarted

Running

Paused

Stopped

launch

start

run

pause

stop

start
destroy

resume

restart

Fig. 2. The lifecycle of an activity

Figure 2 shows the states within the lifecycle of an activity. For
each state transition, the activity receives an event for which an
event handler may be defined, specifying what should be executed
when the event takes place event.

Proceedings of the Computer Science Education Research Conference, 2014.



The Design of Mobile Apps: what and how to teach? • 3

2.4 Threads

Each app runs in a single process and by default all components
run in a single thread. However, additional threads may be cre-
ated, and one can reserve a separate thread for each component of
an app. Because the responsiveness of mobile apps are important,
separate threads are often needed to avoid a ‘freezing’ user inter-
face. Services run, by default, in the main thread. Often, one would
create new threads within a service. The same applies for content
providers that store data through the internet.

3. MODELING ANDROID APPS

Modeling an application before building one, serves several pur-
poses. One may use models to communicate with stakeholders
(UML use case diagrams are an example), to have a visual image
of the solution at a higher abstraction level than the code (UML
class diagrams are an example), to be able to generate code (UML
class diagrams are again an example), or, for instance, to be able to
analyze the solution with respect to specific properties (Finite State
Machines are an example). A diagram technique may be used for
one or more of these purposes. Here, we do not discern for which
purposes each diagram technique could be used.

Android Apps are object oriented programs written in the pro-
gramming language Java and as such can be designed using the
standard UML notations as class diagrams and sequence diagrams.
But mobile applications are often significantly different from stan-
dard object oriented programs. For example, mobile applications
are event-driven, mobile applications as embedded software should
use limited device resources efficiently, and the development of
mobile applications demands additional worries about the short
time-to-market. These issues need special attention and the use of
specialized design techniques [Kraemer 2011; Parada and Brisolara
2012; Stringfellow and Mule 2013].

This means that a course about designing and implementing An-
droid Apps requires among other things proficiency in the concepts
of object orientation, event-driven programming, and the Android
architecture [Riley 2012]. Here, we focus not on the concepts but on
modeling techniques. First, we describe the results of interviews we
had with app developers about their modeling activities (or absence
of them), then we discuss how to model the anatomy of Androids
apps, and finally, we discuss modeling other aspects of Android
apps.

3.1 In practice

For evaluation purposes we contacted a small number of former
students to get information about their experience in developing
mobile applications. Although it was by no means intended as an
extensive and/or formal survey, a number of interesting patterns
emerged. For most, they indicated that the user interface (look and
feel, to the level of details) is the most important aspect of an app.
By using user stories and later on storyboards, they quickly get an
idea of what an app should be like. Some use paper prototyping at a
regular basis to get the first results. They continue with agile devel-
opment of the mobile app, and using rapid prototyping methods and
A/B testing combined with regular contact with their customers en-
sures customer satisfaction. Some indicated that they start with the
part of the application that has the highest risk, and continue with
reassessing the risk associated with the remaining parts after each
step in the development process. In this regard, business decisions
are leading in the process.

When specifically asked about their application design, they
were at a loss. Their first reaction was to claim that other as-

pects were more important, i.e. the user interface, the business pro-
cess, agile development process, and customer satisfaction. As they
talked more, keywords as declarative methods, facades, mediators,
services, frameworks (for instance, AngularJS or Famo.us) arose,
and associated design patterns, the unsuitability of model-view-
controller, and the usefulness of the model-view-presenter design
pattern. They indicated that although they design an app in their
mind, they did not have the proper design techniques to design an
application on paper, as they lacked the necessary graphical and
semantic representations of important aspects of their application
design.

3.2 Modeling the anatomy

3.2.1 Activities. Activities are associated with screens. Use
cases can therefore be detailed into a flow of screens, with user
input acting as a trigger for a transition to another screen (and there-
fore: activity).

There are several aspects of activities that one would like to be
able to model: the functionality, the contents of the screen itself
(with a focus on the functionality), the flow of activities and the
specification of what to do at each life cycle event. For the func-
tionality, one may use UML class diagrams and UML sequence dia-
grams, because activities are (subclasses of) Java classes.

Activity Diagrams
The obvious diagram technique to model the flow of activities
seems to be the UML activity diagram. UML activity diagrams are
meant to model procedural computations, work flows, and system
level processes 2. In an activity diagram, activities can send signals,
can wait for signals, and the execution of one activity may lead to
the execution of another activity. Activities may be nested.

Activity diagrams may be transformed into Petri Nets for ana-
lyzing purposes [Störrle and Hausmann 2004].

Interaction Flow Modeling Language
An activity is associated with a screen. The flow of activities in
an Android app can therefore also be modeled using the (relatively
new) Interaction Flow Modeling Language (IFML) 3. This diagram
technique has been developed for the design of (mainly) the client-
side of web applications. The most important constructs of IFML
are the following:

View container An element of the interface that comprises ele-
ments displaying content and supporting interaction and/or other
view containers, for instance a screen.

View Component An element of the interface that displays con-
tent or accepts input, for instance a button.

Event An occurrence that affects the state of the application, for
instance a user pressing a button.

Action A piece of business logic triggered by an event; either
server-side or client-side.

Navigation Flow An input-output dependency. The source of
the link has some output that is associated with the input of the
target of the link, for instance the link from a row in a list of artists
to a View Component showing information about that artist.

Data Flow Data passing between View Components or Actions
as consequence of a previous user interaction, for instance the
transfer of information of a shopping cart to a payment action.

2OMG Unified Modeling Language (OMG UML),Superstructure, version
2.2, http://www.omg.org/spec/UML/2.2/Superstructure/PDF/
3http://www.ifml.org

Proceedings of the Computer Science Education Research Conference, 2014.



4 • S. Stuurman et al.

Person

Person

Submit
{length, weight}

BMI result

Error

Read
CS

{length, weight}

Process

CS

!OK

OK

{BMI}

Compute

SS

{BMI, error}

Fig. 3. An IFML diagram

Figure 3 shows an example of IFML used in a design of a web
application. Person, BMI result and Error are three view compo-
nents within the view Person. An event (the user submitting a form
with his or her weight and length) triggers the activity Read, which
takes place at the client-side (CS). The event that this activity is
ready triggers an activity Compute on the server. The event that
this activity has been processed triggers an activity Process on the
client, while the BMI index and an error code are sent along. At
the client, the Process activity either produces an OK event, which
means that the BMI will be displayed in the BMI view component,
or an error event, which means that the error view component will
show an error. An event triggers the replacement. Events may be
named, as we have done here for the Submit, OK en !OK events.

As is shown, IFML can be used to describe the flow between
screens, and the associated activities. A screen may be modeled by
a view container or a view component (depending on the level of
detail of the model), while the associated activities may be modeled
using actions.

There is a UML profile for IFML, which means that it can be
adopted by general UML tools; at this moment there is only one
dedicated IFML tool available.4

3.2.2 Services. The functionality of services may be modeled
in the same way as the functionality of activities, using UML class
diagrams and sequence diagrams. It is not possible, however, to in-
dicate that they run in the background. Often, one would like to
be able to model when services perform a certain action (for in-
stance at certain events), and how they use threads to run in the
background. Modeling events and threads is discussed below.

3.2.3 Content providers. For the functionality of content
providers, the same applies as to services. One could model the
type of storage using UML classes.

4http://www.webratio.com/portal/content/en/ifml-standard

3.2.4 Broadcast receivers. To model the broadcast receiver,
one would like to be able to model which kind of notifications may
be received, and which activity or service will handle the notifica-
tion. As we have seen, IFML could be used for that purpose.

For broadcast receivers, the same applies as to services: one
needs to model events and threads.

3.2.5 Communication. As can be seen in Figure 1 (where we
used ‘fantasy’ arrows with custom semantics), it is not straightfor-
ward how to model communication through intents. One would like
to specify whether an intent is directed or anonymous, and what ac-
tion and which data are associated with an intent. Also, one would
like to be able to specify for each activity and service what actions
they can perform (for anonymous intents that are associated with
actions).

The only research we are aware of, on this subject, uses custom-
made building blocks in UML Activity diagrams [Kraemer 2011].
The most obvious choice seems to be an association in a UML class
diagram with a classifier specifying that it is an intent, and specify-
ing whether the intent is directed or anonymous. One could also use
an association class, to specify the data that are sent with the intent.
The arrows in an IFML diagram are very similar to directed intents,
as they may carry data. The only restriction is that the arrows in an
IFML diagram are bound to events.

At the moment of writing, there is no standard way to model in-
tents. The same applies to message passing in general: it is unclear
how to model anonymous message passing, for example.

3.2.6 Life cycle. As can be seen in Figure 2, it is easy to model
the lifecycle of an activity using a UML state diagram. What is de-
sirable, however, is a means to model the desired actions at each
event connected with the life cycle. This might be done by speci-
fying the state the activity has to reach after such an event, but that
is difficult. For instance, in a mobile app, there is no guarantee that
an event handler is executed when an app stops. One would like to
be able to specify what one would like to try to achieve at a certain
event.

The life cycle of Android apps and the fact that an app may re-
ceive broadcast messages are specific cases of the fact that An-
droid apps are event-driven. There are two aspects of events that
one would like to model:

—A specification of the state transition that is triggered by an event:
the state before the event has taken place, and the state after
execution of what is triggered by the event. This is a declara-
tive specification of event handling, focusing on what should be
achieved.

—A specification of which actions to take at a certain event. This is
an imperative specification of event handling, focusing on how
one achieves what is specified above.

With respect to the first issue, the main difficulty is that the state
may have been altered between two related events, for instance be-
tween the event that an Ajax-call has been made and the event that
the response is received. For these issues, Finite State Machines
(a graphical notation with a corresponding algebraic notation that
lends itself for analyzing [Magee and Kramer 2006]) are a usable
modeling technique (see for instance [Marchetto et al. 2008; Al-
tayeb and Damevski 2013]. Instead of Finite State Machines, one
may use UML State-charts, which can be translated into Finite State
Machines for analysis purposes [Drusinsky 2011]. Another possi-
bility is the use of Petri Nets [Benveniste et al. 2003]. One has to
bear in mind that there is no guarantee, on the Android platform,
that the next state is reached after a certain event.

Proceedings of the Computer Science Education Research Conference, 2014.



The Design of Mobile Apps: what and how to teach? • 5

With respect to the second issue, one could use activity diagrams,
and – again – IFML. With IFML, it is possible to specify which ac-
tion is triggered by which event, and one may specify which data
are transmitted as well. Handling broadcast messages for instance,
can be modeled in detail using IFML, by specifying the data of a
message, and the action or service to trigger. The same applies to
life cycle events and events triggered by sensors of the device (ei-
ther detecting user input or a change in the surroundings).

3.2.7 Threads. Because responsiveness is important, one
would like to model which functionality is processed in a separate
thread. Of course, possible problems with threads and state should
be prevented by modeling threads and state, and analyzing those
models.

Threads are necessary in event-based systems that must be re-
sponsive. The main thread of an Android application is the one
that processes UI events, and this thread should not perform heavy
computations or long blocking operations in response to user
events [Yang et al. 2013]. Threads are notoriously difficult to ‘get
right’, because they are inherently non-deterministic [Liu et al.
2011]. To prevent state-related problems with threads, one may use
Finite State Machines, but this can easily lead to a state explosion.

Threads are not only hard to use; it is also difficult to teach con-
cepts around threads, like concurrency and synchronization, in such
a way that students really understand these concepts. There have
been explicit attempts to focus on these aspects. Li et al., for in-
stance, describe a course on concurrency in which they teach how to
use state and sequence diagrams to model concurrent systems. They
also show the well-defined transformation from state diagrams to
threads-based implementations of monitor constructs and condition
variables, and a corresponding transformation to a message-passing
implementation [Li and Kraemer 2013].

Because the hard part of using threads lies in the different states
that the program may be in, the modeling techniques for threads are
essentially the same as for events.

3.3 Modeling other aspects

Some aspects of Android apps might be underexposed with our
focus on the anatomy. Here, we discuss how one may model some
of these aspects. We left out, for instance, permissions (which are
declared in the manifest file) and security.

3.3.1 User interaction. The user interface of mobile apps is
very important. It must be intuitive and clear, on devices that may
differ in the properties of the screen and in sensors for user input.
With respect to user interaction there is the question of the visual
design, which falls beside the scope of this article, but there is also
the question which kind of inputs each screen offers, and how those
possibilities connect to the possible flow of activities: the question
of the functionality of the user interface.

Use Case diagrams
UML use case diagrams are a means for specifying required usages
of a system [OMG 2009]. As such, they may be used to specify
which features a user might expect from an app, but use case dia-
grams cannot be used to model more detailed user interaction.

Sequence diagrams
UML sequence diagrams may model what happens after a user has
taken a certain action. As such, they are geared to the specification
of a specific interaction of objects, to fulfill a certain use case, but
as use case diagrams, they cannot be used to model more detailed
user interaction.

Interaction Flow Modeling Language
IFML cannot be used to model the ‘artistic’ aspect of the user in-

terface, but it can be used to specify which elements each screen
contains (where an element is a view component in IFML terms:
an element that displays content or accepts input). Therefore, IFML
can be used as the interface between designers and developers: it
specifies the functional elements of each screen, which can be used
by designers to design each screen.

3.3.2 Distribution of Functionality. The functionality of a mo-
bile app may be divided between the client and the server. Some
functionality may be implemented on both sides, with a different
purpose (for instance, in the case of form validation). The ques-
tion of how to divide the functionality between client and server
is, in essence, an architectural issue. The usual modeling technique
to describe these decisions is a UML deployment diagram [OMG
2009].

In the case of mobile apps, IFML can also be used to model the
division of functionality between client and server. Each action is,
by default, placed on the server. An action can be provided with
[Client] or [CS] (client-side) to show that it is performed on the
client.

Apps may be seen as distributed processes: in general, they have
a client process and a server process, and in some cases, there may
be a peer-to-peer aspect. This aspect of distributed processes may
also be seen in terms of events: a message from the server, from a
peer or from another app can be modeled as an event.

3.3.3 User interface design patterns. User interface design
patterns play an important role in the design of mobile apps. These
design patterns often concern the visual aspects of the graphical
user interface. An example is to always display the Cancel button to
the left and the OK button to the right [Nudelman 2013]. Other pat-
terns concern the functionality of the user interface (such as asking
whether the user has mistyped a search term, instead of assuming
a case of mistyping and showing results for what the user probably
meant). It would be useful if a modeling technique would allow one
to add these patterns as ready-made building blocks for a graphical
user interface.

Most patterns for Android are related to the visual aspects of the
user interface. There is no support in any diagram technique for
these specific design patterns. One can imagine, however, that it is
possible to supply building blocks in IFML for some of these pat-
terns. When the screen of an activity should, for instance, contain
an OK button and a Cancel button, an IFML building block could
refer to the Cancel/OK pattern [Nudelman 2013] that can be used
by the designer.

4. HOW TO TEACH

Mobile apps are becoming and will become a subject in many
curricula. The Curriculum guidelines for undergraduate programs
in Computer Science 2013 for instance, has a new (elective)
knowledge area ‘Platform-based development’ for mobile applica-
tions [Curricula 2013], and the word ‘mobile’ occurs in various
other knowledge areas.

Modeling Android apps combines modeling techniques from dif-
ferent knowledge areas. The Curriculum guidelines for graduate
degree programs in Software Engineering [GSwE 2009] mentions
Finite State Machines and Petri Nets in the knowledge area of For-
mal methods, while UML class and sequence diagrams fall under
the knowledge area of object oriented design. The same applies to
the curriculum guidelines for undergraduate degree programs [Cur-
ricula 2013]. When one would have to place IFML in one of the
knowledge areas, designing user interaction would be the most ap-
propriate. The design of an Android app thus combines modeling

Proceedings of the Computer Science Education Research Conference, 2014.



6 • S. Stuurman et al.

techniques from different knowledge areas. This is in line with
our expectation, because mobile apps show concepts from differ-
ent knowledge areas [Gordon 2013].

This means that there are two strategies to integrate modeling
mobile apps in a curriculum. On the one hand, modeling mobile
apps could be the subject of one or more courses, in which the con-
cepts and the modeling techniques needed to model apps could be
explained. On the other hand, the concepts could be taught in, for
instance, a course on object oriented programming, while the nec-
essary modeling techniques could be taught in courses on human
computer interaction, object oriented design and distributed pro-
cesses. Mobile apps would be used in examples in such courses.

4.1 Mobile apps as a subject

Learning how to model an Android app (or any mobile app) can be
seen as a complex task. Learning complex tasks should be based
on real-life authentic tasks [Merrill 2002]. This is because in com-
plex learning, students should integrate knowledge, skills and atti-
tudes. Such an integration does not arise automatically. A focus on
learning tasks based on real-life authentic tasks is needed to help
learners to integrate knowledge, skills and attitudes [Merriënboer
and Kirschner 2001]. Students should be provided with support
and guidance while solving such a task. That guidance should tell
students how to recognize an acceptable solution and should pro-
vide guidance to the solution process: procedural information is
required when one offers authentic tasks to enable complex learn-
ing [Kirschner et al. 2006]. This is also in line with guideline 14
‘The curriculum should have a significant real-world basis’ and 18
‘Important efficiencies and synergies can be achieved by design-
ing curricula so that several types of knowledge are learned at the
same time’ of the Curriculum guidelines for undergraduate degree
programs in Software Engineering [Curricula 2009].

This forms an argument for teaching the concepts of mobile
apps and different modeling techniques within the context of mo-
bile apps, instead of within different knowledge areas. Support for
the task of modeling a mobile app consist of knowledge about the
concepts and knowledge about the modeling techniques. Guidance
consists of rules to follow: where does one begin, how does one use
the different techniques, in which sequence? This kind of guidance
should be developed: there is no generally accepted procedure or
‘how to’ for modeling apps.

4.2 Mobile apps as examples

There are difficulties with the approach of apps as a subject. The
Curriculum guidelines for graduate degree programs in Software
Engineering, for instance, tells us: ‘The principles underlying Soft-
ware Engineering change relatively slowly, but the technology
through which Software Engineering is practiced keeps changing
at breakneck speed. Educational institutions must adopt explicit
strategies for responding to changing technology without being
caught in the trap of simply training the latest technology. A key
to this is organizing the curriculum around enduring principles and
planning to change the example technologies regularly.’ [GSwE
2009]. This makes sense, because the knowledge areas will stay
the same during time (while their content will evolve slowly), while
application areas or domains will evolve much quicker.

Also, it would require a complete overhaul of the curriculum to
assign concepts and modeling techniques that now belong to spe-
cific knowledge areas, to courses on mobile development, in the
form of real-world problems with the necessary knowledge and
procedural guidance. It is much easier to introduce mobile apps
in the form of examples in different courses.

5. RELATED WORK

Research on mobile systems, pertinent to this subject, has been car-
ried out in three areas: research on design methods (often with asso-
ciated tools) for mobile apps, research on the concepts within mo-
bile apps, and research on how to teach engineering mobile apps.

An example of research on design methods for mobile apps is
the work of Parada and de Brisolara on a model-driven approach
for the development of Android applications [Parada and Briso-
lara 2012]. Here, class diagrams and sequence diagrams of stan-
dard UML are proposed to model Android applications. Heitkötter
and Majchrzak propose a domain-specific language to model a mo-
bile application. [Heitkötter and Majchrzak 2013]. Ko et al. offer
an approach in which standard UML is extended using stereotypes,
tagged values and constraint meta-classes to model Android appli-
cations [Ko et al. 2012]. Kraemer et al. have a different approach.
Here, the focus is on the responsive nature of mobile apps; the pro-
posal is to design them using UML Activity diagrams, augmented
with State Machines, for which they supply building blocks repre-
senting different Android concepts [Kraemer 2011].

What these approaches have in common is that they offer a spe-
cific method to design mobile applications, often by using UML.
Our focus is different: we try to discern the different aspects of mo-
bile apps and explore which modeling techniques might be useful
for those concepts, with the purpose of providing a set of mod-
eling techniques that might prepare students for the design of mo-
bile apps; not by prescribing one method, but by providing students
with different possibilities.

Gordon discusses the concepts that are relevant for mobile apps:
user interface design and usability, device cooperation, hardware
issues, data handling, application interaction and programming is-
sues [Gordon 2013]. His focus is on the knowledge that students
need, in different knowledge areas, to be able to create mobile apps,
while our focus is on the design techniques they should be taught.
Our study complements Gordons research.

Altayeb and Damevski argue that one should teach a model-first
approach in developing mobile apps [Altayeb and Damevski 2013].
They use the Prolemy II environment [Davis II et al. 1999], which
offers modeling techniques for Communicating sequential pro-
cesses (CSP), continuous-time modeling, discrete-event systems,
discrete-time, process networks, Petri Nets, synchronous dataflow,
synchronous/reactive, and graphics and 3D animations. This is a
choice for the first of our strategies to introduce mobile apps in the
curriculum: using them as a subject, bundled with the necessary
knowledge and techniques. Riley describes how he uses Android
programming to teach Java and advanced programming skills [Ri-
ley 2012]. Stringfellow and Mule describe the use of an Android
project in a course on Software engineering [Stringfellow and Mule
2013]. These researchers have in common that they describe how
they use Android or mobile applications in general to teach certain
areas of computer science. Our focus is on those modeling tech-
niques that should be taught to students for the domain of mobile
applications.

6. CONCLUSION AND DISCUSSION

In this article, we addressed two questions: the question of which
modeling techniques we should teach our students with respect to
the design of mobile applications, and the question of how to inte-
grate modeling mobile applications in the curriculum.

With respect to the first question, we described the anatomy of
Android apps, and made an inventarization of modeling techniques
for each of the elements of these apps. We did the same for other

Proceedings of the Computer Science Education Research Conference, 2014.



The Design of Mobile Apps: what and how to teach? • 7

aspects of Android apps. We showed that the complex nature of
mobile applications and the complex concepts that play a role in
them, demand skills in and knowledge of a variety of modeling
techniques for the design of mobile applications.

Practitioners report that they do not have the proper design tech-
niques, and as a result mobile apps are not explicitly designed in
practice. In particular when mobile apps become subject in a cur-
riculum, it seems worthwhile to offer students relevant modeling
techniques.

When comparing the modeling techniques that are suitable to
model different aspects of Android apps with what is taught in
Computer Science and Software Engineering curricula, the first ob-
servation is the fact that the Interaction Flow Modeling Language
is a ‘fit’ for several aspects of Android apps, while it is not covered
in most curricula (we could not find any curriculum that covered
this modeling technique). This means that, when one would like
to teach students how to design mobile apps, IFML should belong
to the standard set of modeling techniques that are taught to stu-
dents in Computer Science and Software Engineering. It would be
worthwhile to adopt IFML in such curricula.

Other aspects of mobile apps may be modeled using modeling
techniques that are, in general, taught within, for instance, courses
on object oriented design and on distributed systems or on for-
mal methods. The IFML could be taught in courses on, for in-
stance, user-interface design. While most modeling techniques al-
ready have a place in most curricula, the fact that these modeling
techniques are spread over such different courses, brings us to the
second question.

We have described that modeling Android apps can be seen as
a complex task, and should therefore, preferably, be taught as a
complex task: using authentic tasks, with support on the concepts
and the modeling techniques, and with guidance on how to proceed
while designing an app.

Such an approach is one of two strategies to teach students mod-
eling techniques for the context of mobile apps:

—Teach the different modeling techniques in different courses,
along the lines of the above-mentioned knowledge areas: state-
related modeling techniques in a course on formal methods, UML
in a course on object-oriented design, and IFML in a course on
user interaction design.

—Focus on designing and building mobile apps from the start, in-
troducing the different modeling techniques and concepts, and
gradually make it more complicated.

The first approach is in line with the Curriculum guidelines for
graduate degree programs in Software Engineering [GSwE 2009].
All techniques could be integrated in a lab project around an app.

The second approach is in line with what is needed for com-
plex learning, and is in line with the Curriculum guidelines for un-
dergraduate degree programs in Software Engineering [Curricula
2009]. Adhering to this second approach would mean that the cur-
riculum, in most cases, would have to be overhauled completely.
Often, that is impossible.

In either approach, IFML should be introduced, and guidance on
how to design mobile apps should be developed.

ACKNOWLEDGMENTS
We would like to thank Harold Pootjes for his valuable knowledge
of IFML. We would also like to thank Mark Marijnissen, Andres La-
mont, Bram den Teuling, and Jop van Heesch, for giving us insight
in how they design mobile applications.

REFERENCES

Badreldin Altayeb and Kostadin Damevski. 2013. Utilizing and Enhancing
Software Modeling Environments to Teach Mobile Application Design.
Journal of Computing Sciences in Colleges 28, 6 (June 2013), 57–64.

Albert Benveniste, Eric Fabre, Stefan Haar, and Claude Jard. 2003. Diag-
nosis of asynchronous discrete-event systems: a net unfolding approach.
Automatic Control, IEEE Transactions on 48, 5 (2003), 714–727.

The Joint Taskforce On Computing Curricula. 2009. Software Engineer-
ing 2004, Curriculum Guidelines for Undergraduate Degree Programs in
Software Engineering. (2009).

The Joint Taskforce On Computing Curricula. 2013. Computer Science
Curricula 2013. (2013).

J Davis II, Mudit Goel, Chirstopher Hylands, Bart Kienhuis, Edward A Lee,
Jie Liu, Xiaojun Liu, Lukito Muliadi, Steve Neuendorffer, John Reekie,
and others. 1999. Overview of the Ptolemy project. Technical Report.
ERL Technical Report UCB/ERL.

Doron Drusinsky. 2011. Modeling and verification using UML statecharts:
a working guide to reactive system design, Runtime Monitoring and
Execution-based Model Checking. Newnes, Elsevier, Oxford, UK.

Eric Evans. 2004. Domain-driven design: tackling complexity in the heart
of software. Addison-Wesley Professional, Boston, United States.

Aaron J Gordon. 2013. Concepts for mobile programming. In Proceedings
of the 18th ACM conference on Innovation and technology in computer
science education. ACM, ACM, New York, NY, USA, 58–63.

GSwE 2009. Graduate Software Engineering 2009 (GSwE2009) Curricu-
lum Guidelines for Graduate Degree Programs in Software Engineering.
(2009).

Henning Heitkötter and TimA. and Majchrzak. 2013. Cross-Platform De-
velopment of Business Apps with MD2. In Design Science at the In-
tersection of Physical and Virtual Design, Proceedings of the 8th Inter-
national Conference on Design Science Research in Information Sys-
tems and Technologies (DESRIST) (Lecture Notes in Computer Sci-
ence), Jan vom Brocke, Riitta Hekkala, Sudha Ram, and Matti Rossi
(Eds.), Vol. 7939. Springer, Berlin Heidelberg, Germany, 405–411.
DOI:http://dx.doi.org/10.1007/978-3-642-38827-9

Paul A Kirschner, John Sweller, and Richard E Clark. 2006. Why minimal
guidance during instruction does not work: An analysis of the failure of
constructivist, discovery, problem-based, experiential, and inquiry-based
teaching. Educational psychologist 41, 2 (2006), 75–86.

Minhyuk Ko, Yong-Jin Seo, Bup-Ki Min, Seunghak Kuk, and Hyeon Soo
Kim. 2012. Extending UML Meta-model for Android Application. In
Proceedings of the 2012 IEEE/ACIS 11th International Conference on
Computer and Information Science (ICIS ’12). IEEE Computer Society,
Washington, DC, USA, 669–674.

A. Kraemer, Frank. 2011. Engineering Android Applications Based on
UML Activities. In Model Driven Engineering Languages and Systems,
Proceedings of the 14th Conference on Model Driven Engineering Lan-
guages and Systems (MODELS) (Lecture Notes in Computer Science),
Jon Whittle, Tony Clark, and Thomas Khne (Eds.), Vol. 6981. Springer,
Berlin Heidelberg, Germany, 183–197.

Craig Larman. 2012. Applying UML and Patterns: An Introduction to
Object-Oriented Analysis and Design and Iterative Development, third
edition (third ed.). Pearson Education, Upper Saddle River, United
States.

Zhen Li and Eileen Kraemer. 2013. Programming with Concurrency:
Threads, Actors, and Coroutines. In Proceedings of the 2013 IEEE 27th
International Parallel and Distributed Processing Symposium Workshops
& PhD Forum (IPDPSW). IEEE Computer Society, IEE, Washington,
DC, USA, 1304–1311.

Tongping Liu, Charlie Curtsinger, and Emery D Berger. 2011. Dthreads:
efficient deterministic multithreading. In Proceedings of the Twenty-Third

Proceedings of the Computer Science Education Research Conference, 2014.



8 • S. Stuurman et al.

ACM Symposium on Operating Systems Principles. ACM, ACM Press,
New York, NY, USA, 327–336.

Jeff Magee and Jeff Kramer. 2006. State models and java programs (second
ed.). wiley, Chichester, England.

Alessandro Marchetto, Paolo Tonella, and Filippo Ricca. 2008. State-based
testing of Ajax web applications. In Proceedings of the 2008 1st Interna-
tional Conference on Software Testing, Verification, and Validation. IEEE
Computer Society, IEEE Computer Society, Washington, DC, USA, 121–
130.

J.J.G. Van Merriënboer and P.A. Kirschner. 2001. Three worlds of instruc-
tional design: State of the art and future directions. Instructional Science
29, 4-5 (2001), 429–441.

M. David Merrill. 2002. First principles of instruction. Educational tech-
nology research and development 50, 3 (2002), 43–59.

Greg Nudelman. 2013. Android Design Patterns: Interaction Design Solu-
tions for Developers. John Wiley & Sons, Indianapolis, United States.

OMG 2009. OMG Unified Modeling Language (OMG
UML),Superstructure, version 2.2. http://www.omg.org/spec/UML/
2.2/Superstructure/PDF/. (2009).

Abilio G. Parada and Lisane B. de Brisolara. 2012. A model driven
approach for android applications development. In Proceedings of the
Conference on Computing System Engineering, Brazilian Symposium
(SBESC). IEEE Computer Society, IEEE Computer Society, Washington,
DC, USA, 192–197.

Derek Riley. 2012. Using mobile phone programming to teach Java and ad-
vanced programming to computer scientists. In Proceedings of the 43rd
ACM technical symposium on Computer Science Education (SIGCSE
’12). ACM, New York, NY, USA, 541–546.

Harald Störrle and JH Hausmann. 2004. semantics of uml 2.0 activities. In
Proceedings of the IEEE Symposium on Visual Languages and Human-
Centric Computing. IEEE Computer Society, Washington, DC, USA,
235–242.

Catherine Stringfellow and Divya Mule. 2013. Smartphone Applications
As Software Engineering Projects. Journal of Computing Sciences in
Colleges 28, 4 (April 2013), 27–34.

Shengqian Yang, Dacong Yan, and Atanas Rountev. 2013. Testing for
poor responsiveness in Android applications. In Proceedings of the 1st
International Workshop on the Engineering of Mobile-Enabled Systems
(MOBS). IEEE Computer Society, IEEE Computer Society, Washington,
DC, USA, 1–6.

Received August 2014; accepted

Proceedings of the Computer Science Education Research Conference, 2014.


