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Abstract 

The paper presents results from work in progress on 
finding a method for formal specijication and verifica- 
tion of real-time concurrent systems that incorpomte a 
non trivial data component. We have extended Timed 
CCS, a timed CC.9 variant with a model-oriented data 
language based on VDM. The semantics of the exten- 
sion, called MTCCS is expressed in a combination of 
denotational and operational style. We show how veri- 
fication of temporal logic properties based on symbolic 
model checking can be made possible for 
bination notation. 

such a com- 

1 Introduction and overview 

Complex computer systems are frequently highly 
concurrent, distributed and often have real-time pro- 
perties. Since Leveson [14] had pointed out that 
modeling and analysis form the main challenges in 
building complex real-time systems much research has 
been carried out in the field of formal specification. 
The underlying theory of formal specification techni- 
ques has been investigated thoroughly and can be re- 
garded as relatively mature. At the same time, tools 
have been developed that facilitate construction and 
analysis of formal specifications. The benefits of the 
use of formal specification languages are clear. They 
provide a concise framework within which software 
requirements and designs can be expressed unambi- 
guously. The resulting specifications are more suited 
for analysis and verification. 

Figure 1 schematically depicts relationships between 
notations and tools we use in a notational framework 
for formal system modelling, analysis and implemen- 
tation. 

MTCCS, (Model-oriented Timed Calculus of Com- 
municating Systems) is a formal specification language 
aimed at defining real-time concurrent systems with a 

system specification 
notion 

requirement speoificarion 
notation 

implementation technique verification technique 

Figure 1: Notational Framework 

non-trivial data component. It is based on Timed CCS 
[23], a timed version of process algebra notation CCS 
[16] and VDM-SL i [8], the specification notation of 
the VDM methodology [5], [13]. 

To express properties of MTCCS specifications we 
us a real-time temporal logic based on TCTL 121. 

The conceptual model is based on a structural inte- 
gration of denotational semantics and structural opera- 
tional semantics (DESOS) . In this approach the overall 
semantic style is operational. In the definition of the 
transition rules semantic functions are applied which 
are defined by denotational semantic definitions. Both 
MTCCS and RFO-TCTL are given a DESOS seman- 
tics. 

The implementation of MTCCS specifications is ba- 
sed on SYM-UN, a distributed tree based commu- 
nication protocol for basic CCS implemented in the 
Java language. Its definition and implementation of 

‘The specification language for VDM for which an IS0 
standard is currently being developed (IS0 SC22/WG19/N-20). 
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the SYM-UN protocol are omitted from this paper. 
Our method for verifying property specifications is 

based on model checking, which allows verification of 
temporal logic properties in a highly automatic man- 
ner. 

The remainder of this paper is organized as follows. 
In section 2 an overview is presented of the MTCCS. 
Section 3 introduces the notation for requirement spe- 
cification RFO-TCTL. Section 4 is dedicated to verifi- 
cation. It summarizes our approach to model-checking 
MTCCS specifications with respect to properties ex- 
pressed in the RFO-TCTL notation. Fimally section 
5 presents a discussion of our results sofar, compares 
our approach to related work and projects our work 
into the future. It is assumed that the reader is more 
or less acquainted with VDM-SL. Throughout this pa- 
per VDM-SL is used to specify syntactic and semantic 
domains and semantic functions. 

2 The MTCCS notation 

This section introduces shortly the syntax and se- 
mantics of MTCCS. For a more comprehensive des- 
cription of the language, see [15]. MTCCS is a suc- 
cesor to a syntactic and semantic framework based on 
the same combination of VDM-SL and TCCS, called 
MOSCA [22]. Th e aim of the development of MOSCA 
was to increase the applicability of VDM in the area of 
distributed, parallel and real-time systems. It has been 
given various forms of semantics. The current form of 
the MTCCS semantics is strongly based on the first 
semantics for MOSCA given in [21]. The main dif- 
ferences between MOSCA and MTCCS are the more 
precise definition of the state component of MTCCS 
and the particular approach to model the looseness as- 
pect of VDM-SL within the operational semantics of 
MTCCS. 

A MTCCS specification describes four aspects of 
systems of communicating processes: their data- 
containment, their functional behaviour, their process- 
structure and their behaviour in time. Associated with 
these aspects are the following MTCCS constructions : 
data type and state definitions, functions and operati- 
ons on data, agent definitions, and timed actions. The 
basic structuring element in the MTCCS model of a 
system is a process, called agent. The action sequence 
associated with an agent is called its behaviour. 

The core syntax of the process component of 
MTCCS is defined by the abstract domains given in fi- 
gure 2. It forms the base syntax on which the MTCCS 
semantics are defined. The core syntax of VDL-SL is 

omitted in this paper. The full definition of the core 
syntax of VDM-SL can be found in [I]. 

Spec: : Behaviovr : ProcId -% (BExpr x V&Id) 

State : ProcId -? ( Vurld < Type)) 
Init : BExpr 

BExpr = InAct 1 OatAct 1 Idle 1 StateMen 1 Let 1 If 1 
Agent 1 Choice 1 Par 1 Restrict / Relabel 1 Null 
Wait 1 Delay 

InAct : : label : ActId OutAct :: label : ActId 
mvc~r : VarId mval : VExpr 
dvar : Yarld dvar : VarId 
cant : BExpr cant : BExpr 

Idle : : durval : VExpr StateMan : : man : Statement 
cant : BExpr cant : BExpr 

Let :: var : VarId If : : cond : VExpr 
val: VExpr cant : BExpr 
cant : BExpr alt : BExpr 

Agent : I name : ProcId Choice:: left : BExpr 
val : [ VExpr] right : BExpr 

Par : : left : BExpr Restrict:: res : Id-set 
right : BExpr cant : BExpr 

Relabel:: cant : BExpr 

rel : ActId -% ActId 

Wait :: timer : IF!>’ Delay : : act : InAct 
cod : BExpr delay : IR~o 

1 OutAct 

Figure 2: MTCCS Core syntax 

The core syntax domain V,&pr denotes all value 
expressions defined by the VDM-SL part of MTCCS. 
It offers basic types like natural numbers (N), inte- 
gers (Z), reals (lw), booIeans (B), product and union 
types, record types optional types, function and ope- 
ration types. Further it offers complex data structu- 
ring facilities based on set types, sequence types and 
map types. It features subtyping through type inva- 
riants. Some concrete syntax constructions to spe- 
cify the behaviour of agents are shown in Figure 2. 
The core domain Spec holds the information of defi- 
ned agent behaviours (Behaviour), global state com- 
ponents (State), and the behaviour associated with the 
specification (Init). The first four behaviour expres- 
sion domains InAct, OutAct, Idle, and State&fan form 
the prefix expressions. The first two prefix behaviour 
expression domains, InAct and OutAct are the timed 
prefixes of TCCS. The third prefix domain describes 
the idle prefix of TCCS, which expresses time progres- 
sion. The fourth prefix domain handles the infusion of 
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Construction Typical example 
Timed in prefix action( variable) * var 0 . - - 
Timed out prefix action(vaZue) * var Q . . . 
Idle prefix - 
State manip. prefix 
If expression 
Let expression 
Agent instantiation 
Choice 
Parallel composition 
Restriction 
Relabeling 
Null agent 

idle due @ - . . 
u(statement) 0 . . + 
if condition then . . . else . . . 
let var = value in . . - 
A( value) 
behaviour $ behaviour 
behaviour 1 behaviour 
behaviour \ {labels} 
behaviour[reZabeZing] 
null 

Figure 3: MTCCS concrete syntax examples 

state manipulation. It specifies a VDM-SL statement 
that manipulates the state of the agent in which the 
construction appears. 

The If expression enables conditional behaviour 
specification steered by data conditions. The Let 
enables local value bindings, either fixed or loose. E.g. 
in 

let t = 3 in d(z) 

the value 3 is bound to the identifier x in a determi- 
nistic way. In 

let x = (let v E 1,2,3} in v)in d(z) 

it is not deterministically decided what the value of 
the expression bound to c will be. It may be either 
1, or 2 or 3. Depending on the context of the ex- 
pression the choice is made in specification time or-in 
execution time. The Agent domain describes parame- 
terized agent instantiation, like d(x). The next four 
domains describe standard CCS operators. The choice 
construction enables nondeterministic selection of spe- 
cific behaviour. 

The Choice, Par, Restrict, and Relabel domains 
model the standard CCS constructs. The first specifies 
non-deterministic choice between behaviours, while the 
other three are used to model parallelism and commu- 
nication. 

The Null construction denotes the passive agent 
null. Wait and Delay are two core syntax domains 
without a concrete syntax counter part. They are in- 
termediate forms, used to give meaning to the passing 
of time. 

The semantics of MTCCS consists of two compo- 
nents; an operational semantics of the process part, 

and a denotational semantics of the data manipula- 
tion part. The exact form of the data manipulation 
part of MTCCS is not discussed in this paper, but 
can be found in [l]. To be able to define the operatio- 
nal semantics of the process part, only the ‘interface’ 
between the two semantics needs to be defined. 

A labeled transition system M : (S, SO, 23, R) cor- 
responding to an MTCCS specification consists of a 
set of states S, an initial state se E S, a set of la- 
bels C, and a transition relation R. A state (B, p, v) E 
(BExpr x EnvT x Store) consists of three components, 
an MTCCS behaviour expression B, a local definitions 
valuation p, and a state valuation v. 

EnvT and Store are defined as follows. 

Env, Store = Id % Vu1 

EnvT = EnvT . EnvT 1 Env 

A local definitions environment p E EnvT is tree of 
environments, patterned after the process structure of 
the corresponding global state. As can be seen from 
the semantics rules given below, every parallel compo- 
sition causes the local environment to split! creating a 
local environment for each subprocess. A choice may 
also cause the local environment to split, but this is 
only temporary. The reason for this is that some ac- 
tions do not resolve the choice, but do already change 
the local environments of the components of the choice. 
There is one global state environment v E Store, which 
is shared by all subprocesses. 

A transition relation R C S x C x S is a set of 
transitions (s, I, s’) , where Z E C is a transition label. 
The set of transition labels E is defined as follows: 

l Z!vaZ, Z?val E (dctld x VuZ): external actions 
l y: Visible internal actions (as a consequence of in- 

ternal communications and state manipulations) 
l L: Invisible internal actions (as a consequence of 

evaluation of expressions in IdZe, AgentIf and Let 
constructions, and expansion of environments in 
Choice and ParComp expressions. These actions 
do not resolve Choices. 

l e(b), 6 E Iwl”: Time actions 
The interface between the operational semantics and 

the denotational semantics consists of two components; 
the evaluation of state manipulations, and the evalu- 
ation of value expressions. This interface is realized 
by the semantical function eval which is defined as fol- 
lows: 

eval : 
i 

Statement -+ (EnuT x Store -+ Store)-set 
VExpr + (EnvT x Store + VuZ)-set 

2The dual rule is not shown 
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Idle2 I (Wuit(d,B),p,v)~:!(~ait(d--,B),p,v), d>b 

Idle3 (Waitfd, B), p,v) "2 (B, p, v) 

ActDelayl (act,p,v) i (Delay(act,O),p,v) act E (InAct(-,-,-,-), UutA~ct(-,-,-,-)I 

Figure 4: Semantics of MTCCS 

In the case of a state manipulation, the semantical 
function takes a Statement and returns a set of (seman- 
tical) state transformers. A state transformer takes 
a local environment and a state environment and re- 
turns a new state environment. In the case a value 
expression ( VBcpr) is evaluated a set of evaluators is 
returned. Each evaluator takes a local and a state en- 
vironment and returns a value. 

An environment that holds the bindings of process 
identifiers to behaviour expressions is left implicit in 
the semantic rules. This environment is assumed to 
be created by the Spec rule and is used in the Agent 

rule. In the latter the existence of a function Agent : 

Procld 3 (BEqw x V&-Id) is assumed. 
For clarity we will use only single values in input 

actions, output actions, let constructions, and value 
parts. The extension to more complex expressions is 
straightforward and does not have any consequences 
for the discussions presented here. 

3 Requirement specification 

The requirement specification notation is intimately 
associated with the approach taken for verification, in 
our case model checking. The temporal logics traditi- 
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onally used in model checking are propositional logics, 
since these technique abstract from the data domain 
by associating with each state a set of atomic propo- 
sitions true in that state. Since our model does incor- 
porate a state, we will use a first order logic, in our 
case an extension of TCTL (Timed Computation Tree 
Logic) [2] called RFO-TCTL (Restricted First-Order 
TCTL). The logic is called restricted because quanti- 
fication over temporal operators is not allowed, which 
makes our extension quite straightforward. Atomic 
propositions are simply replaced by boolean expres- 
sions from our data manipulation language. The fol- 
lowing grammar defines the syntax of RFO-TCTL: 

where z, zr, 22 range over a set of specification clocks, 
and cl, cg E IIZz”. p ranges over the set of (boolean) 
expressions of our data manipulation language. p is 
satisfied if the valuation of the store satisfies the bool- 
ean value expression p. A(& U&) is satisfied if for 
all computation paths starting from the current state, 
there is a state along it which satisfies 42, and until 
that time 91 is satisfied. E(& U&) is satisfied if there 
is at least one such computation path. t.# is satis- 
fied by the current state if 4 is satisfied by the state 
obtained from the current state by introducing a new 
specification clock z which is set to zero. lo is satisfied 
if the values of the specification clocks satisfy $. Some 
derived operators are: EF+ (There is path on which 
there is state satisfying 4), EG4 (There is a path of 
which every state satisfies 4), AF4 (On all paths there 
is some state satisfying b), AGd (On all paths every 
state satisfies 4). A more detailed description and a 
formal semantics can be found in [ZO]. 

As an example z.EF(p~z < 1) expresses that there 
is within one time unit a future state which satisfies p. 
A G(z. (p + ( AFq A z < 2)) expresses that whenever 
some state satisfies p, then q is always satisfied within 
2 time units. 

4 Verification 

To verify MTCCS specifications we apply modeE 
checking, an algorithmic approach to verification that 
allows fully automatic verification of temporal logic 
propertie specifications. In the verification of real- 
time and hybrid systems, symbolic (real-time) model 
checking techniques [12, 191 have been quite succesful. 
These model checking approaches work on representa- 

tions that in two ways different from our MTCCS for- 
malism Firstly these representations are graph-based 
formalisms like for example timed automata. Secondly, 
symbolic model checking techniques operate on global 
models instead of compositional models. 

Our verification method is therefore based on a two- 
phased approach to verification of MTCCS specificati- 
ons. First, the compositional MTCCS specification is 
translated to a global graph-based representation, and 
subsequently model checking is applied. This approach 
has already been followed for translating several real- 
time process algebras without data to timed automata 
variants [l’i’, 91. However, these are relatively straight- 
forward techniques as they translate a process alge- 
bra specification by fully expanding its control space. 
We combine the transformation from a process algebra 
specification to a graph representation with a reduc- 
tion technique to obtain smaller intermediate models, 
reducing the complexity of the subsequent symbolic 
model checking step. The intermediate graph repre- 
sentation, called XTGraphs (extended timed graphs) 
is a variant of timed automata enhanced to symboli- 
cally represent data components. The expansion pre- 
serves the properties of our requirement specification 
language RFO-TCTL, so that the resulting model can 
be used for model checking purposes. 

Timed automata [4] are finite state transition graphs 
equipped with a finite set of continuous clocks all run- 
ning at the same rate. Transitions may reset clocks and 
are guarded by means of clock constraints referring to 
current values of the clocks. XTGraphs are timed au- 
tomata further extended with capabilities to operate 
on data, by adding data manipulations and data cons- 
traints to transitions, and adding sorts to locations. 

An XTGraph is a tuple (S, se, T, X , E) , where 

l S is a set of Locations, with initial location so 
l T : S + Sort assigns a sort to each location 
l X is a set of clocks 
l E is a set of edges: E c S x S x L x U x C 

where L is a set of action labels, C the set of cons- 
traints on clocks and data, and U set of state updates 
(clocks resets and data manipulations). The semantics 
of time is somewhat different from that of the timed 
automata variants usually used in model checking. We 
focus on verification of closed MTCCS specifications. 
In such a specification an enabled action is always 
performed immediately (that is, without letting time 
pass). This is reflected in the semantics of our XT- 
Graphs representation: Time may only pass in some 
location if none of the outgoing transitions are enabled. 
Other timed automata variants do not force the execu- 
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tion of transitions in this way. Timed safety automata 
[12] for example equip locations with clock constraints, 
to force the execution of transitions. Restricting our- 
selves to defining closed systems does not reduce the 
expressiveness of MTCCS, since the non-deterministic 
environment that comes with an open system can ea- 
sily be modeled by MTCCS processes. 

The XTGraph given in figure 5 corresponds to the 
example system given in specification ?? in section 2. 
Note that this is not a complete XTGraph, since it 
does not model a closed system (the time and reset 
actions are external). We constructed a transla- 

c:=cl 
Reading:=0 

Reading:=Reading +I 
[C=I] 

Figure 5: Example XTGraph 

tion from MTCCS to XTGraphs that results in an 
XTGraph that exhibits exactly the same behaviour as 
the original MTCCS model. This translation invol- 
ves full expansion of the paralellism present in the 
specification, introducing an exponential explosion in 
the size of the state space. The expansion of paral- 
lel processes introduces many different interleavings 
whose distinction is irrelevant since they satisfy the 
same RFO-TCTL specifications. That is why we ex- 
tended our transformation with a reduction technique, 
which is based on partial order model checking tech- 
niques [II, 18, lo]. 

Figure 6: Reduction 

For many states of a system it is safe to only con- 
sider a subset of all its outgoing transitions and suc- 
cessor states, rather than all of them, avoiding unne- 
cessary enumeration of trivially different interleavings. 

Reduction is based on the fact that if two states s and it 
successor S’ have the same ‘observed’ behaviour, then 
it suffices to consider only the transition a leading from 
s to s’, ignoring all other transitions outgoing from s 
(see figure 6). The ‘ignored’ transitions can then safely 
be postponed to the next state. Whether or not two 
states have the same observed behaviour is dependent 
of the property specification to be verified. The partial 
expansion is based on a depth first search algorithm. 
During transformation, in each state the possible out- 
going transition are examined, but instead of interpre- 
ting each transition as an edge in the graph model, 
transitions are omitted if possible. 

Consider a simple example fragment defined by the 
following behaviour expression: 

C(E: = 4) @ idle(2) 0 ‘i(c) 0.. 1 
. (let u = SomeValue in (a(y) * t 0 .. . 

@ idle(u) 0 cr(y: = 0) 0 . . -) 

The corresponding XTGraph is given in figure 7. 
(Cl and C2 are clocks, d and e are variables intro- 
duced by the transformation). When applying only 

Figure 7: Full and partial expansion 

a partial expansion, an XTGraph is constructed that 
only contains the solid-lined transitions and locations. 
Even for this simple example a considerable reduction 
is achieved. 
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5 Discussion 

We described MTCCS, a forma1 language for defi- 
ning real-time concurrent systems with data. Like for 
example LOTOS [6], MTCCS is founded on a com- 
bination of a process algebra with a data description 
formalism. In these process algebras, data is treated 
in different manner. There an environment is created 
that keeps track of substitutions introduced by input 
actions and local definitions. Our approach exphcitiy 
models the state of a system. One advantage of this ap- 
proach is that it has become possible to use shared data 
structures. The fact that MTCCS allows shared data 
has some consequences for the its semantics. If shared 
data were not allowed, a number of semantics rules 
could be simplified, significantly reducing the number 
of L actions in the resulting transition system. The L 
actions associated with the idle, let, and if constructs 
would be superfluous. It may seem that this intro- 
duces a lot of redundancy in the model but most of 
these actions can simply be optimized away, either di- 
rectly, or indirectly by means of reduction techniques 
discussed below. Note that by omitting the state com- 
ponent and the state manipulation prefix, one arrives 
at a value-passing based model. 

The time model of MTCCS is based on that of 
Timed CCS, which is a simple but effective way to 
model timed behaviour. The fact that MTCCS also 
incorporates data, increases the power of our time mo- 
deling constructs. It allows for exampIe the expression 
of intervals in delays, and dealing with elapsed time 
values as normal data values. 

To describe data manipulations we use VDM-SL. 
The work described in this paper is to a great extend 
independent of this choice. Any data manipulation for- 
malism could be used, as long as it adheres to the same 
interface. 

We showed that for a process algebra like MTCCS it 
is possible formally derive a graph baaed model that 
can be used for verification purposes. This work is 
part of research efforts aimed at arriving at a specifi- 
cation and verification strategy for MTCCS specifica- 
tions, based on model checking. The main challenge in 
applying model checking is in avoiding the state space 
explosion. An optimal model checking strategy focu- 
ses on reducing all three sources of this state space ex- 
plosion; interleaving of parallel processes, timing, and 
data. Figure 8 presents an overview of what we think 
such a strategy could look like. Our work is based 
on a two-phased approach to verification of MTCCS 
specifications. First, the compositional MTCCS spe- 
cification is translated to a global graph-based repre- 
sentation, and subsequently model checking is applied. 

The transformation defined in this paper serves as a 
basis for development of more sophisticated techniques 
that intend to avoid the explosion that comes with the 
expansion of parallelism [20]. The expansion defined 
here fully expands the control space of the composi- 
tional process algebra specification. We are currently 
working on combining the transformation with reduc- 
tion techniques, resulting in considerably smaller inter- 
mediate models, reducing the complexity of the subse- 
quent model checking step. This partial expansion will 
use two reduction techniques. The first [20] is based 
on partial order model checking techniques [lo, 181. 
We currently working on a second reduction technique 
baaed on exploiting symmetry present in system spe- 
cifications. 

The final step in this overview is where symbolic 
model checking is applied. An example of such a tech- 
nique is symbolic real-time model checking [12], which 
focuses on timing aspects and data aspects in the form 
of linearly changing continuous variables [3]. Our in- 
tention is to also apply these symbolic techniques to the 
other kinds of data components. For complex data as- 
pects the application of symbolic techniques may very 
well not be feasible. For that reason we envision a 
data abstraction step which simplifies the data com- 
ponent of a system so that symbolic model checking 
becomes possible. The disadvantage of such abstrac- 
tion techniques [7] is that it requires complex human 
involvement in finding the proper abstractions, which 
destroys the mechanic character of the model checking 
approach. However, for certain classes of systems, the 
use of abstraction techniques seems inevitable. Data- 
intensive systems are very hard to deal with using only 
the discussed automatic model checking techniques. 

The partial expansion technique is focused on redu- 
cing the complexity on the control space of the system. 
As a next step we interested in attacking the other two 
sources of complexity, timing and data, by applying 
symbolic model checking techniques [12, 3, 191 to our 
reduced XTGraph models. 

At present we have developed the mentioned partial 
expansion technique, and are in the process of imple- 
menting it in a tool. 
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