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1 Introduction

The problem. Students in Software Engineering encounter difficulties with testing
their software products [5]. They often use a trial and error approach finding and
fixing errors instead of applying a systematic approach.

Many students have the following ideas about testing software [7, 20]:

1. a program is correct if the compiler accepts it,

2. if a program runs and produces some output that looks reasonable, it will work
well in all other cases,

3. when a program looks correct but the output is not right, trying to switch some
things will get the output right, and

4. once a program produces output according to the instructors data, the develop-
ment process is finished.

Beside using these wrong ideas about correctness, many Software Engineering students
encounter difficulties in composing efficient and effective test suites [29]. For example,
students often are not able to create a complete test suite without the use of a code
coverage tool, the suites they compose often contain a large number of redundant
test cases, and they have a tendency to perform minimal and ineffective amounts of
testing [4, 15, 29]

These findings correspond with our own experiences. For example, in a course
about web application development, students often fail to develop adequate test cases
for even simple JavaScript functions: they define an unnecessarily large number of test
cases, many of those redundant, and yet they often miss crucial test cases. Overall,
we observe the problem that students develop test cases without using an explicit
procedure: test cases seem to be composed in an ad hoc manner.

The problem is even more complex, because code is usually not developed in one
go. To satisfy non-functional aspects such as readability and maintainability, code is
refactored a number of times. Refactoring code can easily affect existing test cases [6].
For example, a new function can be added (using function extraction), or a complex
control flow can be simplified. In the first case, an extra tests should be added. In the
second case, test cases should be adjusted to satisfy certain coverage criteria.

For testing software, there exist a overwhelming number of test techniques. Exam-
ples are Boundary Value Testing, Equivalence Class Testing, and Decision TableBased
Testing. Each of these main techniques contains several special techniques, as for
example Boundary Value Testing encloses Normal boundary value testing, Robust
boundary value testing, Worst case boundary value testing, and Robust worst-case
boundary value testing [18]. These techniques are often provided with some points of
attention.

What is missing? What is missing, however, is a step by step procedure on which
of these techniques should be applied and in which order alongside the development
process of a unit of software. One could think of Test Driven Development (tdd) [8]
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as such a procedue. tdd, however, only indicates that test cases should be defined;
no advice is given about which of the test techniques should be applied, the order in
which they should be applied, and the aspects with they concern.

The importance of high quality software needs no argument. It is our duty as
lecturers to teach students the importance of producing software of high quality. Sys-
tematic testing and refactoring are important techniques to achieve this goal. To teach
systematic testing effectively, the following three conditions should be satisfied:

1. Testing is a recurring activity throughout the whole Software Engineering cur-
riculum and is certainly not a distinct or even a single topic [5].

2. Testing should not be an activity on its own, but should be integrated in an
approach for writing software of high quality.

3. Testing is a complex activity and as such should be supported by some procedural
guidance [19, 31, 32].

In this report, we will focus on conditions two and three, i.e. we will develop an
integrated procedure for developing and testing software systematically. As far as
we know, such an integrated procedure is missing. With a procedure, we mean a
step-by-step recipe as for example used by Felleisen et al. in the book How to Design
Programs [11].

Terminology. In this report, we use the terms Test suite and Test case. These terms
are used as follows: A Test case is a set of test inputs and expected results to test
a particular execution path. Because we focus on function development, the case is
a single function. A Test suite is a set of related test cases. A suite may contain
initialization and cleanup actions specific to the test cases included.

Contributions. We have two contributions. First, we describe an incremental and
integrated procedure to develop and test code of high quality. The procedure is inde-
pendent of the programming language or paradigm. The procedure defines in which
order the known test techniques should be applied in relation to the iterative and
incremental development process. Besides attention to core functionality, we strive
for robustness. We illustrate our procedure by means of two cases. The procedure is
independent of the programming language or paradigm. Secondly, we argue why the
procedure developed consists of the right steps in the right order.

Remark. The symbol 4 indicates the end of a remark and the resumption of normal
text. Likewise, the symbol � indicates the end of an example.

This report. In this report, we focus on the development of test cases as part of
a unit test for functions and methods using the programming language TypeScript.
In Section 2 we describe three well known characteristics of tests we focus on in our
procedure, namely: 1) the level of testing (for example an application or a function),
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2) the main approaches (black-box and white-box testing), and 3) the aspect a test
case focuses on (core functionality and robustness). We discuss these characteristics
based on an example, namely a program that computes the solutions of a quadratic
equation of the form ax2 + bx + c = 0. In Section 3, we define an ordering on these
test activities and aspects described in Section 2. Based on these findings, we describe
in Section 4 the procedure in detail. In Section 5, we show the detailed procedure at
work based on the well known Triangle problem (see for example [18]). We describe
related work in Section 6. Finally, we draw our conclusions and describe future work
in Section 7.
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2 Activities and aspects of testing

There are many different kinds of tests that can be performed on a software project.
These tests can be categorized in various ways. Two main categories can be distin-
guished: testing by experimenting with the code behavior and analyzing the implemen-
tation and/or the related design products [14]. In this report, we focus mainly on the
first category, testing by experimentation, also called dynamic testing. The second
category, analyzing, encloses methods as, for example, code walk-throughs, code in-
spections and correctness proofs, which are out of scope in this report. However, we
will use code inspection in our procedure.

We distinguish three characteristics of dynamic tests [14, 18]: 1) the level of testing,
2) the approaches for testing, and 3) the aspect a test case focuses on. We discuss
these characteristics in the following three subsections In the next section, we define
an ordering on these approaches and aspects.

2.1 Test level

The first characteristic we consider is the level a test is applied on. Do we apply a
test on a single software component or do we test a complete system consisting of
several software components? In test literature, a component is often called a unit [3].
Testing a single software component is than called unit testing. A unit can be, for
example, a function, a method, a class, a module, or even a subsystem [3]. The other
level of testing, system testing, focuses on complete systems consisting of a number of
components. In this report, we focus on unit testing, where a unit is considered to be
a function or a method. In our examples, we use JavaScript and TypeScript

2.2 Test approaches

There are two main approaches to test a unit: black-box testing and white-box test-
ing [14]. We give descriptions and examples of both approaches.

2.2.1 Black-box testing.

Black-box testing means testing a piece of software without any knowledge of its
implementation. Test cases are developed and their results evaluated solely on the
basis of the specifications of the unit under test, i.e. what the piece of program is
intended to do. Black-box testing is also called specification based testing or functional
testing. Examples of black-box tests are boundary value testing, decision-table-based
testing, equivalence classes testing, and the cause-effect-graph technique [14, 18].

Example. Suppose we have to test a program that computes the solutions of a
quadratic equation of the form ax2 + bx + c = 0. The specification is as follows:

Signature: function roots(a:number, b:number, c:number): (number | null)

Precondition: a, b, c ∈ R ∧ ¬(a = b = c = 0)
Return: all x values such that ax2 + bx + c = 0

5



This specification requires that a, b, and c are of type number. Notice that the cases
a equals zero, b or c differs from zero (a straight line) and a and b equal zero, c is
unequal to zero (a straight line with gradient zero) are included by the precondition.
The implementation has to distinguish these both special cases. Furthermore, the
precondition excludes a, b and c all equal zero, in which case an infinite number of
solutions exist.

This specification allows for several implementations, as for example the quadratic
formula, factorization, or a numerical method as for example Regula Falsi or Newton-
Raphson.

Taken this specification into account, Table 1 shows our test cases so far. From
the theory of quadratic functions, we know that a quadratic equation of the form
ax2 +bx+c = 0 has zero, one, or two solutions (test cases 1, 2 and 3). In case a equals
zero, b and c are unequal to zero, there is one solution, namely x = −c/b (test case
4). In case a and b equal zero and c is unequal to zero, there is no solution at all (test
case 5). �

Test case a b c Expected output

1 1 4 5 No solutions

2 1 4 4 x = −2

3 1 -2 -3 x1 = −1, x2 = 3

4 0 2 -4 x = 2

5 0 0 1 No solutions

Table 1: Black-box test cases for testing function roots

2.2.2 White-box testing.

White-box testing on the other hand, uses information about implementation details,
for example, the condition part of an if-then-else statement. White-box testing is
also called structural testing ; the program’s structure is used explicitly to derive tests.
White-box tests can be classified according to certain coverage criteria, as, for example,
in increasing finesse, the statement coverage criterion, the edge coverage criterion, the
condition coverage criterion, and the path coverage criterion [14].

Having several coverage criteria raises the question ‘What coverage criterion should
be used?’. In general, there are no rules for determining ‘the right’ coverage criterion.
As stated above, the condition coverage criterion is stronger than the statement cover-
age criterion, but it is known that satisfying the condition coverage criterion does not
guarantee that all faults are detected [16]. The general advice is to combine several
coverage criteria together and to use them in a practical way to find the critical parts
in the code.

Tools can help to measure how thoroughly software is tested. A number of tools
to measure coverage criteria exist; some of them have unique features tailored to a
certain application domain [33].
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Example. Consider the following program fragment, implementing the quadratic for-
mula for calculating the solutions of a quadratic equation with input values a, b and
c. Following our analysis so far, an implementation could be:

function roots(a:number , b:number , c:number): (number | null)[] {

let res: (number | null)[] = [null , null];

// Discriminant d

let d = b*b - 4*a*c;

// Both a straight line with gradient zero and ...

// a quadratic equation with d < 0 have no solutions

if (!((a===0 && b===0) || d < 0 )) {

// A straight line has one solution

if (a===0 && b!== 0) {

res [0] = -c/b;

}

// A quadratic equation with d > 0 has two solutions

else if (d > 0) {

let rt = Math.sqrt(d);

res = [(-b + rt) / (2 * a), (-b - rt) / (2 * a)];

}

// Finally , a quadratic equation with d = 0 has one solution

else {

res [0] = -b / (2 * a);

}

}

return res;

}

Suppose we aim for the edge coverage criterion. This means that we have to choose
values for the variables a, b, and c such that all boolean conditions in the if-then-else
statements are true as well as false. Figure 1 shows the corresponding control-flow
graph of the implementation of function roots. The test cases listed in Table 1 are
plotted with similar numbers beside the edges. As we could see, the black-box test
cases in Table 1 satisfy the edge criterion. So far, there are no differences between the
black-box and white-box test cases. �

Remark. To be honest, a previous implementation of function roots contained an ex-
tra if-then statement in the last else-branch, namely to test explicitly whether d equals
zero, as showed in the following code fragment:

// ... other code

else {

if (d===0) {

res [0] = -b / (2 * a);

} // Implicit else -branch with null statement

}

return res;

As is shown in the code fragment, this implementation resulted in an implicit else-
branch containing a null statement. By drawing the edge coverage graph, enriched
with the test cases, it seemed that the test case corresponding to this implicit else-
branch was missing (number 2 in Figure 1). A first intuitive response was to add
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Figure 1: Control-flow graph concerning edge coverage

the missing test case. Closer inspection, however, revealed that the extra else-branch
could never be reached. As a result, we removed the extra if-then statement, resulting
in less complex code. 4

The example in the remark shows the benefit of using a coverage graph. It helps to
find missing test cases and it makes code complexity visible. Testing only could not
have revealed this unnecessary if-then statement. It was the enriched edge coverage
graph combined with code inspection that revealed the problem.

Instead of drawing a coverage graph yourself, it is possible to use a coverage tool.
We use Istanbul1 as a coverage tool and this tool also indicated a branch that was not
reached by our test cases.

Remark. It should be noted that the cases (a = 0, b 6= 0) (a straight line) might have
been missed as part of the analysis. In that case, the denominator 2 ∗ a should be
pointed as problematic during implementation. Consequently, special measures, as we
have already applied, must still be taken in the implementation as well as the extra
test cases 4 and 5 in Table 1 should be added. Notice that in this situation, the test
cases 4 and 5 would have been part of the white-box test in stead of the black-box
test. It appears that a white-box test functions as a kind of safety net too if cases are
missed as part of specifying black-box test. 4

It is illustrative to show the difference between black-box and white-box testing in an-
other way. Suppose that, instead of the quadratic formula, we have used the numerical
method of Newton-Raphson for calculating the solutions in an iterative way until a

1https://istanbul.js.org/
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specific precision eps has been reached:

function roots(a: number , b: number , c: number): (number | null)[] {

// Declarations and instantiations

let result: (number | null)[] = [null , null],

eps = Number.EPSILON ,

xn = 1,

xn1 = xn -(a*xn*xn+b*xn+c)/(2*a*xn+b);

while (Math.abs(xn1 -xn) >= eps) {

xn=xn1;

xn1 = xn -(a*xn*xn+b*xn+c)/(2*a*xn+b);

}

// Code to calculate other solutions and assigning them to variable

result

return result;

}

This implementation does not use the quadratic formula and does not enclose a de-
nominator 2a. Instead, there is a denominator 2axn + b and as a consequence, a value
of a equals −b/2xn causes arithmetic problems. Furthermore, the boolean expression
|xn+1 − xn| ≥ eps needs attention, i.e. some extra test cases are needed here as we
have to be careful about precision problems due to the constant eps.

Notice that the specification and therefore also the black-box tests are independent
of the implementation chosen.

2.2.3 Test techniques and white-box versus black-box testing

As we have seen, in applying white-box as well as black-box testing, test cases are
derived on partitioning the input domain into suitable equivalent classes based on the
specification or the analysis, assuming that the program’s behavior is similar for all
elements of each class.

Some errors, however, just happen to be at the boundary between classes. Common
mistakes are for example the use of ≥ instead of > or == instead of ≤. A way of
detecting this type of errors, is by using input values not only inside the classes but
also values at their boundaries, i.e. boundary testing. Again, these boundaries can be
found in the specification as well as in the implementation.

Generally, techniques as for example boundary testing and equivalence class testing
are applicable to black-box as well as to white-box testing. Black-box and white-box
determine the source of information test cases are composed on: the specifications
versus the implementation.

In relation to black-box testing, white-box testing can lead to extra partitions of the
input domain based on the code’s structure. For example, in the first implementation
of function roots, we had already distinguished the situations (a = 0, b = 0) and
(a = 0, b 6= 0). Both situations gave rise to an extra partition.

2.3 The aspects a test case focuses on

An important quality of a test or test case is that it only tests one thing, or one aspect,
at a time [17]. In this report, we focus on the aspects core functionality and robustness
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of a unit. Other aspects are for example performance, security, profiling and logging,
which are all out of scope in this report.

2.3.1 Testing core functionality

The first aspect we focus on is the correctness of the core functionality of a function. We
specify core functionality as a precondition-postcondition pair, where the precondition
specifies input values such that the function’s body reaches the post condition for sure
without a need for testing on unexpected input values. Such a precondition is called
strong. Thus, testing of core functionality means taking input values such that the
strong precondition is satisfied.

The term core functionality bears comparison with the term main success scenario
as is used in use case modeling part of the uml language to analyse and design object
oriented systems [21]. A main success scenario is described as a typical unconditional
happy path scenario of success. A difference, however, is that our concept of core
functionality concerns one unit of software, i.e. a function or a method yielding a
result value, whereas a use case concerns usually a number of sequences of function
calls that a system as a whole performs yielding a result of value to an actor.

Example. We have already shown an example of testing core functionality in Sec-
tion 2.1, paragraphs black-box testing and white-box testing. �

2.3.2 Testing robustness

The second aspect we focus on is robustness. Robustness is about how well software
reacts on abnormal conditions [26]. Leino [23] advocates that every program should
have two specifications, one for the case where it ends normally and another one for
the case where something goes wrong. Here, we can distinguish between problematic
input values as well as internal errors.

A problematic input value is a value that causes a processing error while it is exe-
cuted by the implementation without taking special measures. Robustness regarding
problematic input values is reached by weakening the precondition, in an extreme as
making the precondition true. As a consequence, the function’s arguments must be
tested on suitability and in case of an unsuitable value, a special action must be taken
as for example throwing an exception. Weakening the precondition means adapting
the specification and changing the implementation. As a consequence, the tests related
to the specification (the black-box tests) and the tests related to the implementation
(the white-box test) must be adjusted.

Robustness regarding internal errors concerns implementation related errors as for
example possible overflow occurrences and read actions of a file that does not exist.
These type of errors can be diagnosed by inspection of the implementation, i.e. code
inspections [14]. The results of these diagnoses result in code adaptions, as for example
an extra exception, and should be incorporated in the white-box tests too.
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Example: a problematic input value. Following our example of calculating the so-
lutions of a quadratic equation, we discerned the input value a = 0, b = 0, c = 0
as problematic. The precondition excludes this combination of input values, i.e.
a, b, c ∈ R¬(a = b = c = 0), and as such makes the function’s caller responsible
to prevent for this input combination.

Now, we will make the function robust by weakening the precondition and take some
measures in the functions body. The precondition becomes: a, b, c ∈ R, i.e. all input
values should be of type number. No other condition needs to be met. As a conse-
quence, we have to test on input values of a = b = c = 0 inside the function body. If
this test shows that all three parameters equals zero, a special action should be taken.
In our example, the special action could be to terminate the function’s body raising
an exception. �

Generally, by weakening a precondition one has to consider what to do with problem-
atic input values leading to a non success scenario. Possibilities are, for example, to
throw an exception or to return a special value such as -1. Considerations depend
on, for example, the required functionality of the function, the context in which the
function is called, and the required efficiency of the function [23]. In Section 5 we show
how to handle these exceptional cases in a proper way.

Example: an internal error. As an example of an internal error, consider the values
of the input parameters in case the quadratic formula is implemented as the body of
function roots. There is the risk that one of the sub expressions b2,4ac, and 1/(2a) ex-
ceeds the value of Number.MAX_VALUE. As a consequence, we have to test these expressions
on overflow and to take the necessary measures as for example throwing an exception.

Another internal error could appear if the value of the discriminant is compared
with value zero. Because floating point numbers almost never perfectly compare to
other numbers, as zero in our implementation, this is a potential source of problems. �

Again, we will show how to handle these exceptional cases in an eloquent way in
Section 5. Finally, adapting the implementation means revising the white-box test.
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3 Ordering the activities and aspects

In this section, we discuss ‘When to test what?’, i.e. we define a logical order on the
activities and aspects described in the previous section. This ordering forms the basis
for the step by step procedure in the next section.

Core functionality. We start with the aspect core functionality. Testing the core
functionality of a function implies black-box as well as white-box testing. A black-box
test (bbt) is based on the specification, specifying the core functionality. A white-box
test (wbt) is based on the implementation, implementing the specified core functional-
ity. The implementation (impl) is based on the specification too. As such, a white-box
test is supplementary to a black-box test. Figure 2 shows these based-on relations, i.e.
the meaning of each arrow is ‘provides the information needed to compose’.

To be able to specify the function’s signature, precondition and result (spec), we
need to analyze what the function should do in terms of inputs, processing and output
(anal). Analyzing and specifying are important activities, because undetected faults
have mostly to do with incomplete specifications and missing logic [16]and leaving out
specifications often leads to low quality code [30].

Notice that Figure 2 shows only the information needed to develop black-box and
white-box tests. The figure says nothing about other activities as running the tests
and what to do in cases of test failures, i.e. removing errors, or even improving the
analysis, specification, implementation and test cases. These topics will be included
in Section 4. The dotted arrow on the right symbolizes these other activities.

anal spec impl

wbt

bbt

Figure 2: The information needed to test the aspect Core functionality

Robustness. The aspect robustness assumes a specified core functionality. As we
have seen in the previous section, making a function robust means: 1) weakening the
core function’s precondition, and 2) extending the function’s body with code to test the
arguments on suitability and, if necessary, to perform special actions in cases unsuitable
values are provided. This means that the function’s specification and implementation
both change. As a consequence, the tests related to the specification (the black-
box tests) and the tests related to the implementation (the white-box test) must be
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adjusted.
Again, to be able to specify the new precondition and signature (spec), we need to

analyze to which extend the precondition should be weakened and what to do in cases of
unsuitable parameter values, as for example throwing an exception (anal). The black-
box test (bbt) as well as the implementation (impl), both based on the specification,
should be be adapted. A white-box test (wbt), based on the implementation, should
be adapted too.

General ordening. It follows that the activity diagram of Figure 2 is applicable on
the aspect core functionality as well as on the aspect robustness. It is assumable that
the diagram is applicable on the other aspects mentioned in the introduction of this
section, as for example performance and security: For each aspect, the specification
so far is extended based on an analysis resulting in an extension of the black-box test
as well as extensions in the implementation and belonging white-box test. Figure 3
shows this generalized diagram.

anal spec impl

wbt

bbt

aspect i

Figure 3: The general information model to test an aspect
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4 The procedure

The purpose of this report may be expressed as the ambition to extend Felleisens
methodology [11] with a step-by-step recipe for setting up unit tests. Therefore, we
take the design recipe of Felleisen as a starting point, consisting of the following steps:

Step 1. Write as documentation the main purpose of the function, the signature of the
function (the function’s name, the parameter’s names and their types, and the
function’s return type).

Step 2. Create test cases for the function.
Step 3. Write the body of the function.
Step 4. Test the function using the test cases.
Step 5. If needed, refactor the functions body to improve the implementation on for

example readability and run the test cases again.

This recipe has no explicit steps for testing, other than to create test cases and to test
the function using the test cases. In this report, we exend this methodology with a
step-by-step recipe for setting up unit tests, enclosing the effective techniques of white-
box testing, black-box testing, code inspection and refactoring [10]. Besides attention
to core functionality, we strive for robustness.

As is substantiated in the previous section, drawing up a unit test according to
our approach assumes a specification for composing the black-box test as well as an
implementation for composing the white-box test. Furthermore, the specification, the
black-box tests, the implementation and the white-box tests are developed in an iter-
ative and incremental way, i.e. aspect after aspect is analyzed, specified, implemented
and tested.

Refactoring. After an aspect has been implemented and tested, an obvious extra step
is to refactor the code so far, that is to optimize its structure, for example to improve
readability and/or extensibility, without changing the code’s external behavior [12].
Refactoring is an integral part of most iterative and incremental software development
approaches [21]. That way, refactoring is a logical addition to our procedure.

After a refactoring has taken place, the optimized code can be tested using the same
black-box test. If through refactoring the structure of the code has been changed,
the white-box test should be examined and adapted. Furthermore, there could be
several reasons to optimize the specification or even to perform some extra analysis.
Figure 4 shows the high level procedure. In the next two subsections, the procedure
is instantiated for the aspects core functionality and robustness.

Limitations. In this report, we restrict ourselves to write pure functions only, i.e.
functions whose output is solely dependent on the input values. These functions are
deterministic, that is with the same input they always return the same output. As
a consequence, using a random function, for example, in the function’s body is not
allowed. Furthermore, we restrict ourselves to javascript and typescript as languages
and belonging additional languages and tools as jsdoc for code’s documentation.
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Figure 4: The procedure

4.1 The procedure

4.1.1 Aspect core functionality

In the first iteration we focus on the aspect core functionality:

Analyze. Analyze the problem the function has to solve and determine the function’s
signature, including the function’s name and the types of the input parameters as
well as the output type. Use as a guideline that functions should have one goal. If
necessary, design special composite types for the input parameters and the func-
tion’s result value. Think about a precondition and the result of the function. In
this step, the precondition can be as strong as possible, so you can focus on the
core functionality of the algorithm without concerning, for example, robustness
issues. At this stage, the specification so far can be notated in a natural language
as well as in a more formal language as we have used in the example of Section 2.
Products: 1) a description of the function’s goal, 2) the function’s signature in-
cluding the function’s name, parameters’ names and types, and the output type,
and 3) the function’s precondition.

Specify. Write down the results of the analysis step into a specification in jsdoc com-
ment notation, consisting of the function’s name, description, parameter names
and types, precondition and the result type. The jsdoc tags that can be used are:

@function to give the function’s name,
@description to describe the goal of the function,
@param to describe the function’s arguments in terms of names and types,
@precondition a predicate on the argument values that must be statisfied2,
@returns to describe the function’s return value.

Notice that the analysis products are mapped to the jsdoc tags as follows: 1)
the function’s description is used to define the description tag, 2) the function’s
signature is used to define the function tag, the param tag as well as the return

2Actually, the precondition tag is not an existing jsdoc tag, but can be defined as a custom tag.
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tag, and 3) the function’s preconditions is used to define the precondition tag.
Finally, implement the function as a stub.
Products: 1) a specification in jsdoc comment notation, and 2) the function
implemented as a stub.

Define black-box test. Write examples of function calls with the expected output, based
on the problem analysis and the function’s signature preferably in the form of a
table like Table 1. Consider which of the black-box test to use as for example
boundary value testing (see Paragraph 2.2.1). Write the black-box test taking the
preconditions into account. Run the tests, which should fail because of the stub,
in order to check whether the test suite functions well.
Product : Black-box test.

Implement. Design the function’s body, possibly first in pseudocode, and implement
the function’s body. The results of the previous step, the examples of function
calls with expected output, can possibly help in writing the algorithm. As soon
as the function’s body is finished, run the black-box tests. If a test fails, improve
the code so that the tests will succeed.
Product : A running implementation of the function according to the functional
specification.

Define white-box test. Now we have the implementation to our disposal, we are able
to design and implement white-box tests. Think about the coverage criteria that
are valuable. Furthermore, remember that white-box testing can lead to extra
partitions of the input domain based on the code’s structure. Finally, run the
white-box tests. Again, if a test fails, improve the code so that the black-box as
well as the white-box tests succeed.
Products: 1) white-box test, and 2) a running implementation of the function
according to the functional specification.

Refactor. Often, the implementation can be improved by refactoring, for example to
remove redundant code by adding an extra function or by simplifying a complex
control structure. In case of refactoring, the black-box test remains applicable.
The white-box tests, however, should often be adapted. In case a new function is
added, the procedure is followed again for that function.
Products: 1) a refactored implementation, 2) if needed, an adapted white-box
test, and 3) a running implementation of the function according to the functional
specification.

The function so far has core functionality but is, probably, not yet robust.

4.1.2 Aspect robustness

In the second iteration, we focus on the aspect robustness.

Analyze. Consider to weaken the precondition. This depends on, for example, the
context in which the function will be used. Think about the result value of the
function in case a problematic input value occurs, for example a special value
as minus one. In case the function should throw an exception, the function’s
signature should be extended. Furthermore, the precondition and result should
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be adapted according to the analysis results.
Products: Possible adjusted 1) function’s signature, i.e. the parameters’ types
changed, the exceptions that can be thrown, and the changed result type, and 2)
function’s precondition.

Specify. If the precondition is weakened, the specification in jsdoc should be adapted.
In case of an exception, the tag @throws should be used.
Products: 1) adjusted jsdoc specifications, and 2) adjusted stub.

Define black-box test. In cases the precondition is weakened, the black-box test should
be extended. That is, input values from extra partitions containing problematic
values should be considered resulting in additional black-box tests. These tests
should take into account the special return values as for example minus one or
an exception thrown. Run the tests, which should normally fail because of the
missing implementation parts, in order to check whether the test suite functions
well.
Product : extended black-box test.

Implement. First, design and implement additional code that tests on possible prob-
lematic input. This code often comprises some control flow, testing the input
values on suitability. When the input values are suitable, the core functionality
can be performed. When the input values are problematic, a special value can be
returned or an exception thrown, according to the specification. The additional
code, testing on possible problematic input, wraps the existing non-robust version
using the following pattern:

function robustX(parameters) {

var result;

if (isOk(parameters)) {

result = x(parameters);

}

else {

result = exception_value;

}

return result;

}

As soon as the function’s body is extended, run the black-box tests. If a test fails,
improve the code so that the black-box tests succeed. Furthermore, search the
entire implementation for implementation related errors as, for example, possible
overflow occurrences. If there is a matter of an implementation related error, take
the measures needed. If, for example, an extra exception should be thrown, the
specification, as well as the black-box test should be tailored.
Product : a running robust implementation of the function according to the func-
tional specification.

Define white-box test. The white-box tests should be extended with respect to the
added control flow. Run the white-box tests. If the test fails, improve the code
so that the black-box as well as the white-box tests succeed.
Products: 1) white-box test, and 2) a running implementation of the function
according to the functional specification.
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Refactor. Finally, if possible, improve the implementation by refactoring. The black-
box test remains applicable. The white-box tests, however, should often be
adapted.
Products: 1) a refactored implementation, 2) if needed, an adapted white-box
test, and 3) a running implementation of the function according to the functional
specification.
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5 The procedure applied

5.1 The Triangle problem

The Triangle problem (see for example [18]) is developed to show the use of the pro-
cedure.

Input. The triangle program has three positive numbers a, b, and c as input repre-
senting the length of three line segments.

Output. In a first version, the program has to indicate whether or not these three
line segments form a triangle. In a second version, the program should indicate, in
case of a triangle, the type of the triangle, as for example Equilateral, Isosceles, or
Scalene. In case of the three numbers do not form an triangle, the output should be
No triangle. Additionally, we require a, b, and c to be less or equal 200.

Remark. The first version is an application of the ‘divide et impera’ strategy, i.e. first
solve a simpler version of the problem and rely on this solution to find the solution for
the more complex problem. 4

In the next subsections, we will follow our procedure and explain each step.

5.2 Aspect core functionality with a boolean as output

Analyze. The problem description gives us the precondition a > 0 ∧ b > 0 ∧ c > 0.
We have chosen isTri as name for the function, which will have three arguments of
type number. Mathematics states that for a proper triangle three inequalities must
hold (given that a proper triangle has side lengths a, b, c that are all positive and
excluding the degenerate case of a zero area):

Goal : Indicates whether three line segments a, b and c form a triangle
Signature: function isTri(a:number, b:number, c:number): boolean

Precondition: a, b, c all greater than zero
Returns: a + b > c ∧ b + c > a ∧ c + a > b

Specify. Based on the analysis we can write the specification. Furthermore, we can
implement the function as a stub. The specification in JSDoc notation is as follows
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/**

* @function isTri

* @description Investigates whether a,b and c form a triangle

* @param a number representing the length of side a

* @param b number representing the length of side b

* @param c number representing the length of side c

* @precondition a, b, c all greater than zero

* @returns true if a,b,c form a triangle , otherwise false

*/

export function isTri(a: number , b: number , c: number): boolean {

return false;

}

Notice that in this stage, the precondition is as strong as possible, so we can focus on
the core functionality of the algorithm only.

Define black-box test. Based on the inequalities in precondition, we formulate seven
function calls that either satisfy or dissatisfy these inequalities. Three of them test on
boundaries. The corresponding black-box test cases are shown in Table 2.

Test case a b c Expected output

1 3 4 5 true

2 2 3 10 false, because ¬(a + b > c)

3 2 10 3 false, because ¬(a + c > b)

4 10 2 3 false, because ¬(b + c > a)

5 2 3 5 false, because ¬(a + b > c), boundary

6 2 5 3 false, because ¬(a + c > b), boundary

7 5 2 3 false, because ¬(b + c > a), boundary

Table 2: Test cases for function isTri

We have chosen nodeunit as our test tool in TypeScript, because this tool is very easy
to use. The code for the seven test cases is:

let p = require(’./index’) // reference to file index.ts

// with the code of function isTri

import nodeunit = require(’nodeunit ’);

exports.BlackBoxTest1 = function(test:nodeunit.Test) {

test.expect (7);

test.equal(p.isTri (3,4,5),true);

test.equal(p.isTri (2,3,10),false); // because a+b<c

test.equal(p.isTri (2,10,3),false); // because a+c<b

test.equal(p.isTri (10,2,3),false); // because b+c<a

test.equal(p.isTri (2,3,5),false); // because a+b=c

test.equal(p.isTri (2,5,3),false); // because a+c=b

test.equal(p.isTri (5,2,3),false); // because b+c=a

test.done();

}
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Implement. Based on the analysis, it is easy to write the body of function isTri.

export function isTri(a: number , b: number , c: number): boolean {

return a + b > c && a + c > b && b + c > a;

}

If we run our tests, all test cases succeed.

Define white-box test. For the function so far, there are no additional white-box
tests. The black-box tests and white-box tests have the same classes of the input
domain and corresponding boundaries.

Refactor. Refactoring is not necessary.

The function so far has core functionality, but is not robust yet. Before making the
the function robust, we first we apply the procedure so far to a second version of the
Triangle problem, i.e. instead of output bool, the output will be the type of triangle.

5.3 Aspect core functionality with the type of triangle as output

Analyze. We have to determine the kind of triangle. For this, we define result type.
We could use a string, but it is better to make use of an enumeration type.

enum TriangleType {

Equilateral ,

Isosceles ,

Scalene ,

NotATriangle

}

The rules to determine the type of triangle are shown in table 3. Notice that the order
of these rules is of importance.

Nr Name Rule

1 Equilateral a=b=c

2 Isosceles a = b ∨ b = c ∨ a = c

3 Scalene a 6= b 6= c

Table 3: Rules for the type of triangle
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Specify. We extend the specification and stub so far with the result type TriangleType.

/**

* @function isTri

* @description Investigates whether a,b and c form a triangle

* @param a number representing the length of side a

* @param b number representing the length of side b

* @param c number representing the length of side c

* @precondition a, b, c all greater than zero &&

* a + b > c && b + c > a && c + a > b

* @returns the type of the triangle (one out of TriangleType)

*/

export function triType(a: number , b: number , c: number): TriangleType {

return NotATriangle;

}

Define black-box test. Based on the test cases from the previous phase and the rules
for determining the triangle type, we can derive the test cases as shown in Table 4.
Notice, that the first six test cases are the same as the test cases two until seven in
Table 2.

Test case a b c Expected output

1 2 3 10 NotATriangle, because ¬(a + b > c)

2 2 10 3 NotATriangle, because ¬(a + c > b)

3 10 2 3 NotATriangle, because ¬(b + c > a)

4 2 3 5 NotATriangle, because ¬(a + b > c), boundary

5 2 5 3 NotATriangle, because ¬(a + c > b), boundary

6 5 2 3 NotATriangle, because ¬(b + c > a), boundary

7 5 5 5 Equilateral, because a = b = c

8 5 5 6 Isosceles, because a = b

9 5 2 4 Scalene, because a 6= b 6= c

Table 4: Black-box test cases for testing function isTri

The corresponding implementation of these test cases is as follows.
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let p = require(’./index’) // reference to file index.ts

// with the code of function isTri

import nodeunit = require(’nodeunit ’);

exports.BlackBoxTest1 = function(test:nodeunit.Test) {

test.expect (7);

test.equal(p.isTri (2,3,10),NotATriangle); // because a+b<c

test.equal(p.isTri (2,10,3),NotATriangle); // because a+c<b

test.equal(p.isTri (10,2,3),NotATriangle); // because b+c<a

test.equal(p.isTri (2,3,5),NotATriangle); // because a+b=c

test.equal(p.isTri (2,5,3),NotATriangle); // because a+c=b

test.equal(p.isTri (5,2,3),NotATriangle); // because b+c=a

test.equal(p.isTri (5,5,5),Equilateral); // because b+c=a

test.equal(p.isTri (5,5,6),Isosceles); // because b+c=a

test.equal(p.isTri (5,2,4),Scalene); // because b+c=a

test.done();

}

Implementation. To implement this extended version of the algorithm, we use the
previous version. In this case, we use function isTri to determine whether a, b and
c form a triangle. If so, we can further investigate the kind of triangle. If the input
parameters do not form a triangle, the value NotATriangle is returned. We name the
new function triType.

export function triType(a:number , b:number ,c:number): TriangleType {

let res = TriangleType.NotATriangle;

if (isTri(a,b,c)) {

if (a===b && b===c) {

res = TriangleType.Equilateral;

}

else if(a===b || b===c || a===c) {

res = TriangleType.Isosceles;

}

else {

res = TriangleType.Scalene;

}

}

return res;

}

Define white-box test. Aside from class NotATriangle, we have three other classes
of triangles, namely Equilateral, Isosceles and Isosceles. The black-box tests already
covers the boolean expressions in the if-parts completely for the types Equilateral and
Scalene. For Isosceles, however, we there is only one test case, so we add two cases,
b===c and a===c. Table 5 shows the resulting white-box tests.

Refactor. We apply the ‘Decompose conditional’ refactoring [12] and use these func-
tions in the if-parts in function triType. The resulting code is as follows:
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Test case a b c Expected output

1 2 3 10 NotATriangle, because ¬(a + b > c)

2 2 10 3 NotATriangle, because ¬(a + c > b)

3 10 2 3 NotATriangle, because ¬(b + c > a)

4 2 3 5 NotATriangle, because ¬(a + b > c), boundary

5 2 5 3 NotATriangle, because ¬(a + c > b), boundary

6 5 2 3 NotATriangle, because ¬(b + c > a), boundary

7 5 5 5 Equilateral, because a = b = c

8 5 5 6 Isosceles, because a = b

9 6 5 5 Isosceles, because b = c

10 5 6 5 Isosceles, because a = c

11 5 2 3 Scalene, because a 6= b 6= c

Table 5: Test cases for testing function isTri

/**

* @function hasThreeEqual

* @description Determines whether all arguments are equal

* @param a

* @param b

* @param c

* @precondition true

* @returns true if a=b=c otherwise false

*/

export function hasThreeEqual(a: number , b: number , c: number): boolean{

return a === b && b === c;

}

/**

* @function hasTwoEqual

* @description Determines whether two arguments are equal

* @param a

* @param b

* @param c

* @precondition true

* returns true if a=b or a=c or b=c

*/

export function hasTwoEqual(a: number , b: number , c: number): boolean {

return a === b || b === c || a === c;

}

export function triType(a: number , b: number , c: number): TriangleType {

let res = TriangleType.NotATriangle;

if (isTri(a, b, c)) {

if (hasThreeEqual(a,b,c)) {

res = TriangleType.Equilateral;

}

else if (hasTwoEqual(a,b,c)) {

res = TriangleType.Isosceles;

}

else {

res = TriangleType.Scalene;

}

}

return res;

}

24



Remark. Notice that it is not longer necessary to test function isTri explicitly, be-
cause we have used all the test cases to test function triType. 4

5.4 Aspect robustness and additional constraints

Analyze. According to the problem description as formulated by Jorgenson [18], the
input parameters a, b, and c must satisfy the following condition: 0 < a, b, c ≤ 200.
At the same time, we weaken the precondition, i.e. we decide to have no precondition
at all. We decide that if an input parameter does not confirm the extra condition, an
error value will be generated. The corresponding signature will be:

Goal : Indicates whether three line segments a, b and c form a triangle
Signature: function isTri(a:number, b:number, c:number): boolean throws RangeError

Precondition: true
Exception: RangeError, if ¬(0 < a, b, c <= 200)

Specify. The specification and signature of function triType becomes:

/**

* @function triType

* @description Determines the type of triangle

* @param a number representing the length of side a

* @param b number representing the length of side b

* @param c number representing the length of side c

* @precondition true

* @returns the type of the triangle (one out of TriangleType)

* @throws RangeError if not(0 < a,b,c <=200)

*/

export function triType(a: number , b: number , c: number): TriangleType

Define black-box test. For the black-box test, we now must add test cases so that
an exception of type RangeError will be generated. For each argument we define four
test cases: one on the boundaries 0 and 200 and two for values outside the specified
range 0 < a, b, c ≤ 200. The resulting black-box test is shown in Table 6.

Implement. Compared to the previous version, we now must also check whether all
arguments are in the range 0 to 200. For this purpose, we write a function argsInRange

with signature and stub:
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Test case a b c Expected output

1 2 3 10 NotATriangle, because ¬(a + b > c)

2 2 10 3 NotATriangle, because ¬(a + c > b)

3 10 2 3 NotATriangle, because ¬(b + c > a)

4 2 3 5 NotATriangle, because ¬(a + b > c), boundary

5 2 5 3 NotATriangle, because ¬(a + c > b), boundary

6 5 2 3 NotATriangle, because ¬(b + c > a), boundary

7 5 5 5 Equilateral, because a = b = c ∧ ¬NotATriangle

8 5 5 6 Isosceles, because a = b ∧ ¬NotATriangle

9 6 5 5 Isosceles, because b = c ∧ ¬NotATriangle

10 5 6 5 Isosceles, because a = c ∧ ¬NotATriangle

11 5 6 7 Scalene, because a 6= b 6= c ∧ ¬NotATriangle

12 0 5 5 RangeError: a < lower, boundary

13 -100 5 5 RangeError: a < lower, boundary

14 200 5 6 NotATriangle: a = upper, boundary

15 200.1 5 5 RangeError: a > upper, boundary

16 5 0 5 RangeError: b < lower, boundary

17 5 -100 5 RangeError: b < lower, boundary

18 5 200 6 NotATriangle: b = upper, boundary

19 5 200.1 5 RangeError: b > upper, boundary

20 5 5 0 RangeError: c < lower, boundary

21 5 5 -100 RangeError: c < lower, boundary

22 5 6 200 NotATriangle: c = upper, boundary

23 5 5 200.1 RangeError: c > upper, boundary

Table 6: Test cases for testing function triType
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/**

* @function argsInRange

* @description Indicates whether for all elements el of ar:

* low < el <= high

* @param ar array of numbers

* @param low lower boundary not included

* @param high upper boundary included

* @precondition low < high

* @returns true if for all elements of ar:

* low < el <= high else false

*/

function argsInRange(ar: Array <number >, low:number , high:number):boolean{

return true

}

Notice that we have used an array to make the function more general. Also notice that
we have a precondition low < high. Because we use argsInRange as an internal function
of TriangleType, we can always take care that low < high holds. Table 7 lists the test
cases for this function. The implementation of function argsInRange can be elegant by

Test case a b c Expected output

1 [1,2,3,4,5,6,199,200] 0 200 true

2 [0,1,2,3,199,200] 0 200 false

3 [1,2,3,199,200,200.01] 0 200 false

4 [0,2,3,199,200.1] 0 200 false

Table 7: Test cases for testing function argsInRange

use of the standard array function every:

function argsInRange(ar:Array <number >, low:number , high:number):boolean{

return ar.every((el)=>{return el > low && el <= high});

}

In stead of modifying function triType, we write a new function triAngle that first
checks the arguments. If the arguments are not correct it throws an exception, else it
calls function triType. The implementation is as follows:
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/**

* @function triAngle

* @description Determines the type of triangle

* @param a number representing the length of side a

* @param b number representing the length of side b

* @param c number representing the length of side c

* @precondition true

* @returns the type of the triangle (one out of TriangleType )

* @throws RangeError if not(0 < a, b, c <= MAX)

*/

export function triAngle(a: number , b: number , c: number): TriangleType {

let ar=[a,b,c];

function argsInRange(ar:Array <number >,low:number ,high:number):boolean{

return ar.every((el)=>{return el >low && el <=high});

}

if (! argsInRange(ar , 0, MAX)) {

throw new RangeError("One of the arguments is not in the range 0, "

+ MAX);

}

return triType(a,b,c);

}

Define white-box test. We will now examine the code and pay special attention for
overflow and the comparison of floats. Because the arguments are between 0 and 200,
overflow will not occur. The problem left-over is the comparison of floats. If we simply
use operator === we can have a problem due to internal representation and rounding
errors. For example, 0.1+0.2 === 0.3 evaluates to false in typescript! In stead of using
=== we can investigate whether the absolute value of 0.1+0.2-0.3 is less than some value
EPS. For EPS we can take the constant NUMBER.EPSILON. So instead of using operator ===,
we use a function isEqual(a: number, b: number): boolean that evaluates the expression
Math.abs(a-b)< NUMBER.EPSILON. As a result, we rewrite some functions and use function
isEqual in stead of using ===.

/**

* @function isEqual

* @description Compares two floating point numbers

* taking into account rounding errors

* @param a number

* @param b number

* @precondition true

* @returns true if a < b, otherwise false

*/

export function isEqual(a: number , b: number): boolean {

return Math.abs(a-b) < Number.EPSILON;

}

Refactor. There is no need for refactoring anymore. The final complete code be-
comes:

28



export const MAX = 200;

export enum TriangleType {

Equilateral ,

Isosceles ,

Scalene ,

NotATriangle

}

/**

* @function isTri

* @description Investigates whether a,b and c form a triangle

* @param a number >0 representing the length of side a

* @param b number >0 representing the length of side b

* @param c number >0 representing the length of side c

* @precondition true

* @returns true if a,b,c form a triangle , otherwise false

*/

export function isTri(a: number , b: number , c: number): boolean {

return a + b > c && a + c > b && b + c > a;

}

/**

* @function hasThreeEqual

* @description Determines whether all arguments are equal

* @param a number

* @param b number

* @param c number

* @precondition true

* @returns true if a=b=c otherwise false

*/

export function hasThreeEqual(a: number , b: number , c: number): boolean {

return isEqual(a,b) && isEqual(b,c);

}

/**

* @function hasTwoEqual

* @description Determines whether two arguments are equal

* @param a number

* @param b number

* @param c number

* @precondition true

* returns true if a=b or a=c or b=c

*/

export function hasTwoEqual(a: number , b: number , c: number): boolean {

return isEqual(a,b) || isEqual(b,c) || isEqual(a,c);

}

/**

* @function triType

* @description Determines the type of triangle

* @param a number representing the length of side a

* @param b number representing the length of side b

* @param c number representing the length of side c

* @precondition true

* @returns the type of the triangle (one out of TriangleType )

*/

export function triType(a: number , b: number , c: number): TriangleType {

let res = TriangleType.NotATriangle;

if (isTri(a, b, c)) {

if (hasThreeEqual(a, b, c)) {

res = TriangleType.Equilateral;

}

else if (hasTwoEqual(a, b, c)) {

res = TriangleType.Isosceles;

}

else {

res = TriangleType.Scalene;

}

}

return res;

}
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/**

* @function triAngle

* @description Determines the type of triangle

* @param a number representing the length of side a

* @param b number representing the length of side b

* @param c number representing the length of side c

* @precondition true

* @throws RangeError if not(0<a,b,c <=200)

* @returns the type of the triangle (one out of TriangleType )

*/

export function triAngle(a: number , b: number , c: number): TriangleType {

let ar = [a, b, c];

/**

* @function argsInRange

* @description Indicates whether for all members el of ar: low < el

<= high.

* @param ar array of numbers

* @param low lower boundary not included

* @param high upper boundary included

* @precondition low < high

* @returns true if for all elements of ar: 0 < el <= high else

false

*

*/

function argsInRange(ar: Array <number >, low: number , high: number):

boolean {

return ar.every((el) => { return el > low && (el < high) || (isEqual

(el ,high)) });

}

if (! argsInRange(ar , 0, MAX)) {

throw new RangeError("One of the arguments is not in the range 0, "

+ MAX);

}

return triType(a, b, c);

}

/**

* @function isEqual

* @description Compares two floating point numbers taking in account

rounding errors

* @param a number

* @param b number

* @precondition true

* @return |a-b| < EPS

*/

export function isEqual(a:number ,b:number):boolean{

return Math.abs(a-b)<Number.EPSILON;

}
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6 Related work

As far as we know, literature about procedural guidance for test development does
not exist, especially not for test development as integrated part of incremental and
iterative software development approaches.

6.1 Current techniques

There are many books about testing. For example, in the book Pragmatic Unit Testing
in Java with JUnit [17], attention is paid to structuring a unit test in pre test, test and
post test activities and using the various JUnit syntax constructs to test, for example,
error conditions resulting in an exception. In addition, a number of guidelines are
mentioned that might be important to compose a test case, as, for example, checking
boundary conditions, checking inverse relationships, and forcing error conditions.

Another example is the book Software Testing: A Craftsman’s Approach [18] de-
scribing a number of main test techniques for unit testing, as for example Boundary
Value Testing, Equivalence Class Testing, and Decision TableBased Testing. Each
of these main techniques contains several special techniques, as for example Bound-
ary Value Testing encloses Normal boundary value testing, Robust boundary value
testing, Worst case boundary value testing, and Robust worst-case boundary value
testing. Each of these main techniques is provided with some guidelines, all merely
points of attention as opposed to describing, for example, which techniques should be
used in which order especially in relation to the incremental and iterative development
approaches.

6.2 Procedural guidance for testing

Punnekkat et al. mention that work on improving the test design phase is new [28].
Bertolino [2] describes a roadmap of relevant challenges to be addressed. One of

the problems she mentions is that so many test methods and criteria exist, that the
capability to make a justified choice, or rather to understand how they can be most
efficiently combined, becomes a real challenge.

It is now generally agreed that it is always more effective to use a combination of
techniques, rather than applying only one, even if judged the most powerful, because
each technique may target different types of fault, and will suffer from a saturation
effect. We think that our approach supports these requirements. Applicable in a
context of a first year course about software construction and testing, we developed a
stepwise procedure enclosing and ordering a selected number of test methods integrated
in a process of analysis, specification, implementation, testing, and refactoring.

Bertolino [2] suggests that the test process should be engineered using testing pat-
terns. Research should strive for producing engineered effective solutions that are
easily integrated into development and do not require deep technical expertise. Our
procedure can be considered as a process pattern.
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6.3 Testing in education

An experiment with students to evaluate the possible impact of knowledge about
software testing on the production of reliable code, shows that such knowledge can
improve code reliability in terms of correctness in as much as 20% [24]. However,
it was also found that instructors that teach introductory programming courses lack
proper testing knowledge.

Even the book How to Design Programs [11], describing procedural guidance of how
to develop functions systematically, does not pay much attention to how to use all
the different types of tests and how they fit into the steps as part of the procedure.
The purpose of this report may be expressed as the ambition to extend Felleisen’s
methodology [11] with a step-by-step recipe for setting up unit tests.

6.4 Test First and Test Last approaches

Test First approaches, with tdd as its most widely known member, are software
development practices in which test cases are written before the functionality is devel-
oped [8]. In a first step, the interface of say a function is specified. After that, a test
comprising a number of test cases is developed to verify the function’s behavior. These
test cases are considered as a specification of the function to be developed. Finally,
the body of the function is completed throughout an iterative process, consisting of
the activities coding, refactoring and testing, until all test cases succeed.

In Test Last approaches, testing is done after coding. In these approaches, the devel-
opment of test cases takes place when the function’s specification and implementation
are ready.

Both approaches have their own advantages and disadvantages. An extensive com-
parison of the two approaches [13] suggests that the main advantage of the Test First
methodology lies in its ability to encourage developers to consistently take fine-grained
refactoring steps. Another advantage is that this approach forces the programmer to
specify the unit’s desired behavior in the form of test cases in advance. On the other
hand, Scanniello et al. [30] found that applying the Test First approach tdd often
leads to low quality code, i.e. the process encourages developers to write quick-and-
dirty code to make the tests pass. Subsequent improvement of the code’s quality by
refactoring is often ignored, resulting in bad quality code.

Test Last approaches on the other hand, enables one to take the code structure
into account, thus ensuring that test cases cover all execution paths and focus on loci
where trouble may occur. This is ‘white-box testing’, as opposed to ’black-box testing’
that uses only the specification. Also observe that in a modern iterative development
process, where both implementation and specification refinement proceed iteratively,
practically all testing takes place when some features have already been implemented
and others are yet to be realized. Obviously this tends to blur the distinction between
early and last testing.

Our approach includes Test First as well as Test Last properties. Especially the
application of white-box analysis techniques incites to analyze the code structure often
results in better code quality.
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The Test First as well as the Test Last approach do not provide any advice as to
which tests should be applied and in which order. Logically, Test First approaches start
with some black-box tests, but somewhere certain white-box test should be added too!
It is exactly this absence of guidance where our approach jumps into and give certain
scaffolding.

6.5 Test Driven Development

Test Driven Development (tdd) is the most widely known member of the Test First
approaches [1, 13]. We think that our approach enriches the tdd approach. A typical
iterative and incremental tdd cycle consists of the following six steps [22]: 1) take a
functionality and write a corresponding unit test, 2) run all tests and see the new one
fails, 3) implement just enough code to pass the new test, 4) run the new test and
all other unit test cases written for the code, 5) repeat the process until all tests are
passed, 6) refactor the code and re-run all tests. The process is repeated from step
one for each next functionality.

The tdd procedure gives no clues about the aspects to consider and the order to
do that. The procedure uses the term ‘functionality’, but this term can enclose, for
example, core functionally as well as robustness.

It strikes that there is no specification at the start of the process. Instead, the
unit test substitutes the specification and is extended in an iterative and incremental
way. In our opinion, however, analyzing and formulating specifications is an important
activity, because it is known that undetected faults have mostly to do with incomplete
specifications and missing logic [16].

Furthermore, the procedure leaves aside when to specify black-box as well as white-
box tests, i.e. the procedure talks only about ‘a corresponding unit test’. What is
more, it seems that white-box tests are never considered explicitly, because tests are
only written in the first step of each cycle. It is exactly these issues that are treated
in our approach.

6.6 Related issues

Several papers, e.g. the one by Falessi and Kruchten [9], discuss the concept of technical
debt. This is defined [25] as ‘a design or construction approach that’s expedient in the
short term but that creates a technical context in which the same work will cost more
to do later than it would cost to do now (including increased cost over time)’. In
terms of testing this means that any additions or modifications made during iterative
program development must be reflected in the test suite, either by adding new tests
or by relocating existing ones. Parodi, Matalonga, Macchi and Solari [27] did an
experiment with undergraduate students, expecting to find that applying tdd would
have less Technical Debt than those developed with Test Last and ad hoc programming.
However, the test results dit not produce any evidence to confirm this.

Punnekkat et al. [28] developed an analysis method based on identifying mistakes
made during test case design, resulting in a categorization of mistakes and a meta-
method to improve the effectiveness of test case construction. They describe some
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problems we think are addressed by our approach. First, they mention that a known
source of problems are the bounderies more or less visible at different levels in the
software, i.e. the specification and implementation. These boundaries should always
be tested but are often missed in practice. A solution is not given to this problem.
We think that our approach gives guidance in solving this problem, by distinguish-
ing boundaries on the input domain and in the implementation concerning different
aspects. Secondly, they observed that students are in general better in defining valid
input than invalid input data, and as such use mostly obvious test cases and often do
not vary in inputs resulting in low coverage and less robust systems. Our approach
emphasizes the aspect robustness, and give guidance how to do that, namely by a
step-by-step approach in which the function’s precondition is relaxed concerning the
specifications as well as the implementation of the function. Based on the analysis,
Punnekkat et al. define a cyclic meta process to eliminate mistakes made in test case
construction, consisting of the following steps: 1) select test cases and test specifica-
tions, 2) perform an expert review on test design, 3) define mistakes categories, 4)
measure mistakes, 5) propose a new test template, 6) teach the template and common
mistakes, and finally 7) measure the efficiency. Our approach is concrete process, i.e.
a template, on the level of procedural guidance consisting of fine grained steps.
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7 Conclusions and future work

As we explained, a step by step instruction, for students, on how to integrate writing
tests while developing functions, including advice on how to proceed after having
refactored the code, was missing. Applicable in a context of a first year course about
software construction and testing, we developed a stepwise procedure enclosing and
ordering a selected number of known test methods integrated in a development process
of analysis, specification, implementation, testing, and refactoring.

Our approach includes the benefits of Test First as well as Test Late appraches.
Especially the application of white-box analysis techniques incites to analyze the code
structure often results in better code quality.

We think that our approach solved the problem of how the overwhelming number
of test methods and test criteria may be combined most efficiently in an integrated
development process [2]. It is exactly this absence of guidance where our approach
provides scaffolding. Our procedure can be considered as a process pattern [2].

We think that our approach gives guidance in solving this problem, by distinguish-
ing boundaries on the input domain and in the implementation concerning different
aspects. Our approach emphasizes the aspect robustness, and give guidance how to
do that, namely by a step-by-step approach in which the function’s precondition is
relaxed concerning the specifications as well as the implementation of the function.

We think that the procedure is generic, i.e. that it will support other aspects as for
example performance as well. This is planned as future work.

We have started to teach our students using this procedure, and will report later
about our findings.
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