
Test Maintainability
Improving test maintainability after refac-
toring with AST-Rewrite based advice

S.J. Hanique

St
ud

en
t:

85
17

49
51

3
D

at
e:

12
/0

6/
20

17

TEST MAINTAINABILITY
IMPROVING TEST MAINTAINABILITY AFTER

REFACTORING WITH AST-REWRITE BASED ADVICE

by

S.J. Hanique

in partial fulfillment of the requirements for the degree of

Master of Science
in Software Engineering

at the Open University, faculty of Management, Science and Technology
Master Software Engineering

to be defended publicly on Monday June 26, 2017 at 15:00 PM.

Student number: 851749513
Course code: IM9906
Thesis committee: Dr. ir. H. Passier (chairman), Open University

Dr. ir. S. Stuurman (supervisor), Open University

An electronic version of this thesis is available at http://dspace.ou.nl/.

http://dspace.ou.nl/

CONTENTS

1 Introduction 1
1.1 Research Questions . 3
1.2 Research Approach . 3
1.3 Research Document Structure . 4

2 Refactoring and AST-Rewrites 5
2.1 Refactoring Examples and Counterparts . 5
2.2 Micro-Refactorings . 7
2.3 Refactoring Limitations . 7
2.4 Refactoring Automation . 7
2.5 Abstract Syntax Tree & Rewrites. 9

2.5.1 A refactoring in AST-Rewrites . 10
2.6 JUnit . 12
2.7 Retestoring Plug-in . 14
2.8 Eclipse . 14
2.9 Summary . 14

3 AST-Rewrite Types 16
3.1 AST-Rewrite Attributes . 16
3.2 Example Refactorings. 17

3.2.1 Extract Method . 17
3.2.2 Inline Method . 19
3.2.3 Move Method . 21
3.2.4 Move Method Alternative . 21

3.3 More Example Refactorings . 23
3.3.1 Introduce Factory . 23
3.3.2 Introduce Parameter . 24
3.3.3 Extract Superclass. 25
3.3.4 Extract Class . 27

3.4 Conclusion . 28

4 Results on Tests 29
4.1 Impact on Correctness of Tests . 29
4.2 Limitations and code assumptions. 30
4.3 Code Change Analysis . 32

4.3.1 Change Data Collection . 32
4.3.2 Determine Exact Change . 37
4.3.3 Change Analysis Module. 40
4.3.4 Changes object . 41
4.3.5 Change Determination. 42

2

CONTENTS 3

4.4 Impact on Tests . 44
4.4.1 Filtering changes . 44
4.4.2 Impact determination . 44

4.5 Conclusion . 48

5 Creating advice 49
5.1 Global advice. 49
5.2 Detailed advice . 50
5.3 Advice object . 51
5.4 Conclusion . 51

6 Presentation of advice 52
6.1 Advice as a refactoring . 52

6.1.1 Advice in AST-Rewrites. 52
6.2 Textual advice . 53

6.2.1 Language . 53
6.2.2 Presentation style . 53

6.3 Conclusion . 53

7 Plug-in 55
7.1 Study. 55

7.1.1 Custom Plug-in . 55
7.1.2 Existing Retestoring Plug-in. 55
7.1.3 The Advice Addition . 56

7.2 Advice creation Plug-in extension . 57
7.2.1 Versions. 57

7.3 Validation . 57
7.3.1 Test case . 58
7.3.2 Additional test cases . 58
7.3.3 Conclusion . 61

8 Related Work 63
8.1 XUnit Test Patterns & Test Smells . 63
8.2 Software Evolution . 63
8.3 Conclusion . 64

9 Conclusion 65
9.1 Conclusion - Research Questions. 66
9.2 Contributions . 67

9.2.1 Software . 67
9.2.2 Insights & Discussion. 68

9.3 Evaluation . 69

10 Future work 70
10.1 Test suite analysis . 70
10.2 Advice presentation . 70
10.3 Automatic advice execution . 70
10.4 Advice interface . 71
10.5 White-box Tests . 71

4 CONTENTS

10.6 Minor tasks . 71

Bibliography 73

Acronyms 75

Glossary 76

LIST OF FIGURES

4.1 Refactoring Input Parameters . 35
4.2 Refactoring Data Flow . 37
4.3 Change Data Flow . 41

7.1 Advice Addition UML Use-case diagram . 56
7.2 Pipe Filter Advice Architecture . 56

9.1 Pipe Filter Advice Architecture . 65

5

LIST OF TABLES

2.1 Extract Method Refactoring example . 6
2.2 The micro-refactorings of an extract method refactoring 8
2.3 Example of a move in a simple program . 10
2.4 Extract Method in AST-Rewrites . 11
2.5 An example of a test class . 12
2.6 A parameterized example of a test class . 13

3.1 The AST-Rewrites of an ’Extract Method’ refactoring 18
3.2 The AST before and after the ’Extract Method’ example 19
3.3 The AST-Rewrites of an ’Inline Method’ refactoring 20
3.4 The AST-Rewrites of a ’Move Method’ refactoring 21
3.5 The AST-Rewrites of a ’Move Method’ refactoring (alternative) 23
3.6 The AST-Rewrites of an ’Introduce Factory’ refactoring 24
3.7 The AST-Rewrites of an ’Introduce Parameter’ refactoring 25
3.8 The AST-Rewrites of an ’Extract Superclass’ refactoring 26
3.9 The AST-Rewrites of an ’Extract Class’ refactoring 27
3.10 The AST-Rewrites attributes and their informational value 28

4.1 The AST-Rewrites of an ’Extract Method’ refactoring 32
4.2 The data of an ’Inline Method’ refactoring . 35
4.3 Example refactoring data of a ’Change Method Signature’ refactoring 36
4.4 Example refactoring data of a ’Move Method’ refactoring 36
4.5 The AST-Rewrites of a ’Move Method’ refactoring 37
4.6 A description of the Changes object contents 43
4.7 A list of changes that impact tests. 45
4.8 A list the impact of changes on tests. 46

7.1 Code before and after the ’Inline Method’ refactoring 59
7.2 The AST-Rewrites of the ’Inline Method’ refactoring example 60
7.3 The data of an ’Inline Method’ refactoring . 61
7.4 Test cases for the advice addition plug-in . 62

6

1
INTRODUCTION

Nowadays, many software systems are evolving continuously, with maintenance modifica-
tions to the source code as a result. Due to the large numbers of code modifications, it is
difficult to maintain code quality. Changes could reduce the code quality even if no errors
are induced.

There are several software maintenance activity types [International Standards Organi-
sation (ISO), 1999]:

• Adaptive maintenance: software adaptation to remain functional in case of a chang-
ing software environment. For example, to upkeep the interaction with an operating
system or other external software packages.

• Corrective maintenance: software error identification and resolving.

• Perfective maintenance: software functionality implementation due to changing user
requirements.

• Preventative maintenance: software structure improvements by cleaning and reor-
ganization the source code to increase reliability and readability among others.

Preventative maintenance can be necessary as a result of so called bad smells in the
source code.

A bad smell 1 (also known as code smell) is a certain code indication that hints to a possi-
ble flaw in design or a structural problem [Fowler et al., 1999]. Some examples of bad
smells are: duplicated code, large/god classes, long methods, call/message chains
and overuse of comments.

Code containing a bad smell is not necessarily incorrect; it can still function as in-
tended. Code smells are considered ’bad’ because of the possible future issues they may
cause. Note that the emphasis lies on the word ’possible’, as not all code smells lead to a
negative impact on the software [Zhang et al., 2011]. An example of a bad code smell is a
code duplication situation where a duplicated part needs to be updated. If one overlooks

1M. Fowler, "CodeSmell". Retrieved on 17-08-2016 from http:martinfowler.com/bliki/CodeSmell.
html

1

http:martinfowler.com/bliki/CodeSmell.html
http:martinfowler.com/bliki/CodeSmell.html

2 1. INTRODUCTION

a problem with another duplication part, a bug may have been induced. Another exam-
ple is a long method. In this case, the concern is that its internal functionality is difficult to
comprehend and thus to maintain. The method is too complex and has too much informa-
tion clumped together [Fowler et al., 1999]. Bad smells can be treated by a process called
refactoring [Fowler et al., 1999].

Refactoring is "the process of changing a software system in such a way that it does not alter
the external behaviour of the code, yet improves its internal structure" [Fowler et al.,
1999]. This definition consists of two important parts: (1) maintaining external code
behaviour and (2) improving the program structure.

The first part of the definition describes that the preservation of behaviour is key. The
functioning of the code has to remain the same, because it is the structure that is incor-
rect, not the functioning. This is opposed to changes, for example, fixing bugs, where be-
haviour of code is changed because it is proven faulty. The second part describes the goal of
improving the structure of the software system. A better structure improves maintainabil-
ity, reduces software complexity and thus overall makes the system easier to understand
[Fowler et al., 1999, Mens and Tourwé, 2004].

Another common way to improve software maintenance is by using tests. The meaning
and correctness of source code is often checked by (unit) tests, especially in Test-Driven
Software Development (TDD). TDD is an agile software development method, and its es-
sential part is to write tests beforehand [Beck, 2002]. Other agile development methods, for
example eXtreme Programming (XP), use the TDD approach. In short, the cycle of TDD is
as follows: at first a test is created to test a future requirement. The tests are then executed
and the new test should fail, because the actual code has not yet been written. The next
step is to write the code for the requirement, but just enough to make it pass the test. Then
the tests are executed again, and now all tests should pass. The last step is to rewrite and
clean the code; this is where the refactoring process takes place. When all steps are per-
formed, the cycle starts again with a new iteration [Beck, 2002]. Refactoring and (unit)tests
are a key aspects of XP.

A problem arises when refactoring code with corresponding tests. Applying certain
refactorings on the code can affect its tests. When, for example, a refactoring introduces
a new method, the program’s tests are no longer complete. Therefore, changing the test
code after a refactoring seems inevitable [Passier et al., 2016, Moonen et al., 2008]. But,
what if we could ease the process of revising tests?

The main purpose of this research is to create advice based on the results of a refactor-
ing on the tests. This is a complement to a prior study [Passier et al., 2016]. In short, this
prior study describes the need for tests to change subsequent to a refactoring in its corre-
sponding code. Both refactoring and TDD are key aspects of agile development, preserving
test code quality and coverage in association with refactoring is important.

Currently, a Java Eclipse plug-in has been created that is capable of detecting refac-
torings based on AST-rewrites. As output, a list of AST-rewrites for the involved JUnit test
cases are listed. These AST-rewrites are similar to what is also known as micro-refactorings
[Passier et al., 2016, Schäfer et al., 2009]. More on AST-Rewrites and micro-refactorings will
follow in a later chapter.

The presentation of the advice given by the plug-in is currently a mere draft [Passier
et al., 2016]. One refactoring could result in more than one smaller piece of advice, which

1.1. RESEARCH QUESTIONS 3

may be more difficult to comprehend. In addition, at the moment, this advice has to be
processed manually.

The goal is to develop the given concept and improve the advice. A possible way of
achieving this, is to reassemble the listed AST-Rewrites into a (larger), more readable, ad-
vice. If applicable, this advice could be presented as a refactoring (as defined by Fowler
[Fowler et al., 1999]). Ideally this method could be extended to also reassemble AST-Rewrites
into an advised design pattern, as a design pattern often consist of several refactorings. To
accomplish this goal, the current results of the study and the output including the limita-
tions of the current plug-in should be analyzed. Providing an advice, independent of the
integrated development environment’s implementation of a specific refactoring, is also a
necessity. The presentation and way of giving advice are of importance as well. Eventu-
ally the refactoring advice could be made executable, which means that the advice can be
directly applied if the developer chooses to.

1.1. RESEARCH QUESTIONS
The aforementioned goals are converted and divided into five separate research questions:

• RQ1: Which different output combinations can the plug-in return?
This research question is aimed at examining the data to work with. For example,
finding a common pattern in the output combinations, would provide a base for ad-
vice determination.

• RQ2: Can the original refactoring be requested from a set of AST-Rewrites, and if
not, can AST-Rewrites be recombined to reveal the initial refactoring?
Information on the original refactoring holds valuable data on, among others, the
location and parameters of a refactoring. This data is necessary in order to provide a
certain detail to the advice.

• RQ3: Is it possible to group AST-rewrites into a larger standardized advised change,
and if so, which standards are applicable to present the advice in?
With an advice standard we mainly want to achieve readability, but with future addi-
tions in mind, we also want to try and support automation.

• RQ4: Can the refactored code itself contribute to the advice?
As the refactored code itself literally shows the exact change, we would like to research
if this data provides additional information for the advice creation.

• RQ5: Is it possible to automate the advised changes with available refactorings in
the Eclipse IDE or JDT?
With the automation of advice in mind, we want to research if (and how) the possible
standard of RQ3 can be automated.

1.2. RESEARCH APPROACH
During this research we will use the ’Design and Creation’ approach [Oates, 2006]. With
this approach, an artifact will be delivered with the goal of knowledge contribution. This
research will include the following artifacts: constructs, models, methods and instantia-
tions. Constructs include: refactoring, micro-refactoring, abstract syntax tree, AST-Rewrite

4 1. INTRODUCTION

and JUnit. The models will be UML diagrams to aid the problem understanding and to aid
the creation of the plug-in. Methodologies include ways to determine the impact of AST-
Rewrites and its corresponding code change on the tests, and to give advice based on the
determined impact. The instantiation is a proof of concept plug-in addition which demon-
strates the results of this research. During the design and creation process, additional req-
uisite knowledge will be obtained via a literature study.

1.3. RESEARCH DOCUMENT STRUCTURE
This research document is organized as follows. Chapter 2 further describes the concepts
of refactoring and AST-Rewrites. In Chapter 3 we take a closer look at the different AST-
Rewrite types, by examining several refactoring examples. Chapter 4 discusses how to de-
termine the exact change of a refactoring and describes how certain changes can impact
tests. In the fifth Chapter we provide an approach to create an advice based on the de-
termined impact, whilst in Chapter 6 we provide a way to present said advice. Chapter
7 describes the creation of our own advice addition plug-in, which is an extension to the
’Retestoring’ plug-in. For Chapter 8 we take a look at other literature that is related to our
research. In Chapter 9 we discuss and evaluate our contributions and provide a final con-
clusion for our research. Lastly, Chapter 10 lists future work.

2
REFACTORING AND AST-REWRITES

This chapter provides an introduction to the important concepts of this research. First, we
provide an introduction to the aspect of refactoring. Additionally, we provide a description
of the different refactoring types and the limitations of refactorings in general. Further-
more, we show that a refactoring is essentially a set of smaller changes, which can be de-
scribed by two different techniques. Next, we provide a definition of the concept ’test’, and
provide examples of how a test code environment could look like. Lastly, we describe the
current status of the ’Retestoring’ plug-in.

2.1. REFACTORING EXAMPLES AND COUNTERPARTS
A bad smell can be resolved by one or more refactorings. For instance, when the function-
ality of a method is not clear by its name, the ’Rename Method’ refactoring is applicable.
This refactoring is nothing more than changing a method’s name to reflect its true purpose.
In the background, every call to this method has to be changed as well.

Another refactoring is the ’Extract Method’ refactoring. This refactoring can be used to
shorten the length of a long method. In this case, code in the method’s body can be grouped
together and extracted as a separate method. Long methods often perform more than one
distinct task. These (sub) tasks or functionalities can be separated, which make the code
more readable and thus easier to maintain. However, one can get too optimistic and create
a method for every few lines of code. When (extracted) methods are "no longer pulling
their weight", one can replace the method call with its body [Fowler et al., 1999]. This is
the opposite of the extract method refactoring, and is called ’Inline Method’. In Table 2.1,
we show a code example of an ’Extract Method’ refactoring for a print price calculation
method.

Table 2.1 shows a method for calculating the price of a print order. In this example,
two ’Extract Method’ refactorings take place. Because the calculation method is long and
consists of several separable steps, the ’Extract Method’ refactoring is applicable. The cal-
culation of the page price and colour price can be extracted from the method as two dis-
tinct methods. Although this simple refactoring may not make the code shorter, it is easier
to read and better maintainable. When, for example, another colour price variant is in-
troduced, only the calculateColorPrice method has to be edited, while the other pricing
methods remain intact.

5

6 2. REFACTORING AND AST-REWRITES

Extract method refactoring example
Before refactoring

public double calculatePrintPrice (int amountPages , boolean colored ,
int quality) {
double price = 0;
double colorPrice = BLACK_WHITE_PRICE ;
if (colored) {

colorPrice = COLOR_PRICE ;
}
double pagePrice = 0;
switch (quality) {
case 1:

pagePrice = BASE_RATE * colorPrice ;
case 2:

pagePrice = PLUS_RATE * colorPrice ;
case 3:

pagePrice = HIGH_RATE * colorPrice ;
}
price = amountPages * pagePrice ;
return price;

}

After refactoring

public double calculatePrintPrice (int amountPages , boolean colored ,
int quality) {
double price = 0;
double colorPrice = calculateColorPrice (colored);
double pagePrice = calculatePagePrice (quality , colorPrice);
price = amountPages * pagePrice ;
return price;

}

private double calculateColorPrice (boolean colored) {
double colorPrice = BLACK_WHITE_PRICE ;
if (colored) {

colorPrice = COLOR_PRICE ;
}
return colorPrice ;

}

private double calculatePagePrice (int quality , double colorPrice) {
double pagePrice = 0;
switch (quality) {
case 1:

pagePrice = BASE_RATE * colorPrice ;
case 2:

pagePrice = PLUS_RATE * colorPrice ;
case 3:

pagePrice = HIGH_RATE * colorPrice ;
}
return pagePrice ;

}

Table 2.1: Extract Method Refactoring example

2.2. MICRO-REFACTORINGS 7

2.2. MICRO-REFACTORINGS
Performing refactorings manually shows that these refactorings actually consist of several
sub steps. These (sub) steps of a refactoring are called micro-refactorings and each per-
form a small defined task [Schäfer et al., 2009]. As an example, we use the ’Rename Method’
refactoring again, where the actual renaming is only a part of the refactoring. This refactor-
ing also includes: finding all method references, keeping these references intact (locking
and unlocking bindings) and verifying the new name [Schäfer et al., 2009]. Something that
is simple to understand can thus still be a lot of (programming) work. In Table 2.2, we show
a decomposition of the extract method refactoring as an example.

Table 2.2 illustrates the sub steps of the extract method refactoring. The first piece of
code shows the highlighted code that is going to be extracted into a separate method. The
first step is to create a new method and set the selected code as its body. The creation of
the new method is not complete yet. The second step is to analyse which variables the new
method needs in order to function. In this case it needs the variables total and person
from the original method, which are set as the new method’s parameters. The next step is
to check which variables are referenced or need to be returned to the original method. The
variable total is changed in the new method and used later on in the method. Therefore
the new method must return the total value and change its return type. The last step is
complete the extraction; give the new method a proper name and call the new method in
the original method.

2.3. REFACTORING LIMITATIONS
The decomposition of a refactoring into smaller steps makes the limitations more clear.
The example of Table 2.2 shows a limitation of the extract method refactoring. When the
extracted part modifies two or more local variables of the method, the extract method refac-
toring is not applicable. Java has no keyword to solve this problem, in contrast with C#,
where the ’ref’ keyword can be used. Solutions to this problem are other refactorings, for
example, ’Replace Temp with Query’, which extracts a local variable expression as a method
[Fowler et al., 1999]. If the variable is used more than once, the refactoring ’Split Temporary
Variable’ can be used. This refactoring separates each temporary variable used in an ex-
pression. When too many local variables are used in the code to be extracted, the ’Replace
Method with Method Object’ is the final solution. This refactoring creates an object and
turns the needed local variables into its fields [Fowler et al., 1999].

2.4. REFACTORING AUTOMATION
Refactorings as ’Extract Method’ or ’Rename’ are relative simple code changes for a pro-
grammer. But decomposition proves them to be more complex. When we take a look at
large refactorings, it becomes even more complex, for instance, the separation of the do-
main logic from the presentation logic refactoring. This is a refactoring, which consists of
several smaller refactorings. Even for humans, these large refactorings are difficult to per-
form.

Nowadays, there are many Integrated Development Environments (IDE’s) that offer
(partly) automated refactoring support. For example, Eclipse, IntelliJ and Visual Studio
offer the programmer a fair amount of ready to use refactorings. This support can make
refactoring more accessible and less human error prone [Schäfer et al., 2009]. However,

8 2. REFACTORING AND AST-REWRITES

Extract method refactoring in micro-refactorings
0: Original code

public void calculateTotalSalary () {
int total = 0;
for(Person p : getAllPersonnel ()) {

printLine("name: " + p.name);

total += p.salary;
}

printLine ("total salary : " + total);
}

1: New method creation

private void newMethod () {
printLine ("name: " + p.name);
total += p. salary ;

}

2: Method parameters

private void newMethod (int total , Person p) {
printLine ("name: " + p.name);
total += p. salary ;

}

3: Return type and value

private int newMethod (int total , Person p) {
printLine ("name: " + p.name);
total += p. salary ;
return total;

}

4: Method call and result

public void calculateTotalSalary () {
int total = 0;
for(Person p : getAllPersonnel ()) {

total = addSalaryToTotal (total , p);
}

printLine ("total salary : " + total);
}

private int addSalaryToTotal (int total , Person p) {
printLine ("name: " + p.name);
total += p. salary ;
return total;

}

Table 2.2: The micro-refactorings of an extract method refactoring

2.5. ABSTRACT SYNTAX TREE & REWRITES 9

this does not mean that the automated refactorings cannot induce any errors, as program-
mers can decide to ignore warnings and execute an error inducing refactoring. Aside from
that, several Java refactorings implementations contain bugs themselves [Hafiz and Over-
bey, 2015].

Refactoring has several types: (full) manual refactoring, automatic refactoring and au-
tomated refactoring.

Full manual refactoring means that the developer has no assists from smell or refactoring
tools whatsoever. The advantage of this approach is that the developer is perfectly
aware of every refactoring change to the code. The disadvantage is the amount of
work it takes to perform every refactoring by hand and the increased chance of in-
ducing errors [Schäfer et al., 2009].

Automatic refactoring is a program that finds the bad smells for you, it selects correspond-
ing refactorings and executes them. The key element is that the developer has little to
no interaction with the refactoring program. The downside to this approach is, that
it is easy to lose track of the changes on the system.

Automated refactoring is a balance between interaction and automation. It also can per-
form refactorings, and depending on the tool, search for bad smells and advice refac-
torings. The difference is that the developer keeps the initiative. In a refactoring sup-
portive IDE, the developer can decide when to refactor. For example, an automated
refactoring can be as easy as: selecting a block of code, choosing a refactoring from a
list of refactorings and providing the desired parameters.

2.5. ABSTRACT SYNTAX TREE & REWRITES
An Abstract Syntax Tree (AST1) is a tree representing the abstract syntactic structure of the

source code of a program. A node in the AST corresponds to a certain block of code
structure in the source code.

The Java Development Tools (JDT2) provide the structure for all Java projects in the Eclipse
workspace represented as an AST. For example, the root node, represents a Java file. The
child nodes contain AST representations of the package declaration, import declarations
and types (classes, interfaces, etcetera). Class type AST nodes also have children, which
are its method declarations. The method declarations contain the method’s statements as
children, and so on1. The nodes also have additional information, for example, a method
declaration node has a property that shows the AST of the method’s implementation.

An Abstract Syntax Tree Rewrite (AST-Rewrite3) is a change on a node of an abstract syn-
tax tree. An AST-Rewrite describes the structural change. Changes on the source code
of a program can be reflected as changes on nodes of an AST. When, for example, a
refactoring is executed, nodes in the AST are either inserted, removed or replaced
[Passier et al., 2016].

1T. Kuhn and O. Thomann, "Abstract Syntax Tree". Retrieved on 08-09-2016 from https://www.eclipse.
org/articles/article.php?file=Article-JavaCodeManipulation_AST/index.html

2http://www.eclipse.org/jdt/
3http://help.eclipse.org/neon/topic/org.eclipse.jdt.doc.isv/reference/api/org/
eclipse/jdt/core/dom/rewrite/ASTRewrite.html

https://www.eclipse.org/articles/article.php?file=Article-JavaCodeManipulation_AST/index.html
https://www.eclipse.org/articles/article.php?file=Article-JavaCodeManipulation_AST/index.html
http://www.eclipse.org/jdt/
http://help.eclipse.org/neon/topic/org.eclipse.jdt.doc.isv/reference/api/org/eclipse/jdt/core/dom/rewrite/ASTRewrite.html
http://help.eclipse.org/neon/topic/org.eclipse.jdt.doc.isv/reference/api/org/eclipse/jdt/core/dom/rewrite/ASTRewrite.html

10 2. REFACTORING AND AST-REWRITES

Before we move on, we will explain the different rewrite operations and some variants
with an extra ’placeholder’ value. To explain the AST-Rewrite variants, we use an example
situation where we move code from one class to another. There is no ’move’ AST-Rewrite,
therefore, a move has to be realized as a combination of rewrites.

Table 2.3 is an example program, where the highlighted code will be moved to another
class. This example shows two operations: first, the removal of the method in ’class1’,
and second the insertion of the same method into ’class2’. Thus, a move is essentially a
combination of a removed rewrite and an inserted rewrite. However, this inserted rewrite
is actually an insert with placeholder. The placeholder’s essential function is to hold data
during a move or replace, to temporarily ’store’ a value until it is used. In the example of
Table 2.3, it is important to keep the original code, as it still needs to be inserted elsewhere.
Thus, the value is stored in a placeholder before the original is removed. Next, an insert (or
replace) rewrite will put this placeholder value at the new location node in the AST. This
placeholder is not a node in the AST, but a separate ’String’ value.

Program code before move

public class class1 {
public void method1(int param) {

//Do stuff...
}

}

public class class2 {

}

Program code after move

public class class1 {

}

public class class2 {
public void method1(int param) {

//Do stuff...
}

}

Table 2.3: Example of a move in a simple program

2.5.1. A REFACTORING IN AST-REWRITES
The Extract method example in Table 2.4 can also be described as AST-Rewrites, based on
a combination of changes.

Just as in Table 2.2, the highlighted code will be extracted. The first change is the ’Insert
with placeholder’ rewrite, which writes a temporary ’MISSING’ node on the spot of the
extracted code and keeps the body as placeholder data. The next step is the ’Insert’ rewrite,
to create a new method with the extracted code as its body. The last step is the ’Replace’
rewrite, to replace the extracted code with a call to the new method.

AST-Rewrites and micro-refactorings can both be used to describe changes as a result of
a refactoring. However, an AST-Rewrite is more abstract than a micro-refactoring. An AST-
Rewrite shows the structural change in the program. It focuses on the change in nodes (rep-

2.5. ABSTRACT SYNTAX TREE & REWRITES 11

Extract method refactoring in AST-Rewrites
0: Original code

public void calculateTotalSalary () {
int total = 0;
for(Person p : getAllPersonnel ()) {

printLine("name: " + p.name);

total += p.salary;
}

printLine ("total salary : " + total);
}

1: Insert with placeholder
Code Placeholder

public void
calculateTotalSalary () {

int total = 0;
for(Person p :

getAllPersonnel ()) {
MISSING ();

}
printLine ("total salary : " +

total);
}

printLine("name: " + p.name);
total += p.salary;

2: Insert

private int addSalaryToTotal (int total , Person p) {
printLine ("name: " + p.name);
total += p. salary ;
return total;

}
3: Replace

public void calculateTotalSalary () {
int total = 0;
for(Person p : getAllPersonnel ()) {

total = addSalaryToTotal (total , p);
}

printLine ("total salary : " + total);
}

private int addSalaryToTotal (int total , Person p) {
printLine ("name: " + p.name);
total += p. salary ;
return total;

}

Table 2.4: Extract Method in AST-Rewrites

12 2. REFACTORING AND AST-REWRITES

resenting blocks of code) and the corresponding operation (insertion, deletion or replace-
ment) [Passier et al., 2016]. A micro-refactoring is a small sub step of a refactoring, which
provides a better understandable and testable task. Micro-refactorings steps are changes
on the code on a much lower level than AST-Rewrites. Therefore micro-refactorings show
the challenges of each refactoring [Schäfer et al., 2009]. Examples of refactoring challenges
are: the preservation of control and data flow, and the preservation of (name) bindings.
To visualize the difference, compare Table 2.2 with Table 2.4. Challenges for the extract
method example, are the determination of the parameter(s) and return value of the new
method. The more abstract AST-Rewrites do not show these specific details.

2.6. JUNIT
In several agile development methods, (public) methods are accompanied by a correspond-
ing test method in the corresponding test class. This research focuses on unit tests with the
use of the JUnit framework, as this framework is commonly used in a TDD setting. It is
important to provide the definition for the word ’test’ in this research context. With ’test’
we refer to a black-box JUnit unit test. Black-box means that the internal structure of the
unit under test is not taken into account, hence the term. A unit test is a test that exam-
ines the behavior of a distinct unit [Tahchiev et al., 2010]. The main characteristic of a unit
test, is that it is an independent task, and therefore not directly affected by the completion
of other tasks. JUnit refers to a single method when mentioning a "distinct unit of work"
[Tahchiev et al., 2010]. However, the definition of a unit is debatable, as a method, a class
or a package can all be referred to as a unit [IEEE Standards Board, 1999]. In this research,
we use the term ’unit’ to refer to a method.

The JUnit framework has features that make it easy to write and run tests. In JUnit, indi-
vidual tests are represented by methods. Test classes or test cases contain these individual
test [Tahchiev et al., 2010]. A test suite is a group of tests put together. If no suite is defined,
a suite containing all methods in a test class will be automatically created. Lastly, the test
runner is the "processor" that runs the test suites [Tahchiev et al., 2010]. In Table 2.5, we
show a simple example of a unit test with corresponding code.

Code and corresponding JUnit test
Program code Test code

public class MyCalculator {
public double add(double x,

double y){
return x + y;

}
}

public class MyCalculatorTest {
@Test
public void testAdd () {

MyCalculator calc = new
MyCalculator ();

double result = calc.add (5,
-2);

assertEquals (3, result);
}

}

Table 2.5: An example of a test class

In the example of Table 2.5 there are a few thing worth noting. The ’@Test’ annota-

2.6. JUNIT 13

tion in front of the test method marks the method as a unit test [Tahchiev et al., 2010]. The
’assertEquals’ method is a special method within the JUnit framework to compare cer-
tain values. Instead of only one assertion, a test method can have multiple assertions. JUnit
has a special test runner when testing with multiple different values is desired; parameter-
ized tests. Table 2.6 shows an example of the parameterized test construct. The parame-
tized class has the same basic structure as a normal test, but has an additional constructor
and a create parameters method. This method creates and fills the list of parameter to run
the test with, and can be recognized by the ’@Parameters’ annotation.

Parameterized test

@RunWith (value= Parameterized . class)
public class ParameterizedMyCalculatorTest {

private double expectedValue ;
private double firstValue ;
private double secondValue ;

@Parameters
public static Collection < Integer []> getTestParameters () {

return Arrays . asList (new Integer [][] {
//{ expected value , first parameter value , second parameter

value}
{2, 1, 1},
{3, 2, 1},
{4, 3, 1},

});
}
public ParameterizedTest (double expectedValue

double firstValue double secondValue){
this. expectedValue = expectedValue ;
this. firstValue ; = firstValue ;
this. secondValue ; = secondValue ;

}
@Test
public void testAdd () {

MyCalculator calc = new MyCalculator ();
assertEquals (expectedValue , calc.add(firstValue , secondValue),

0);
}

}

Table 2.6: A parameterized example of a test class

Aside from parameterized tests, one can choose to use multiple assertions in a method,
or use several distinct test methods to test the same method. This is however a matter of
personal preference, as opinions differ on the elegance of these approaches and are some-
times even considered as ’test smells’ [van Deursen et al., 2001].

14 2. REFACTORING AND AST-REWRITES

2.7. RETESTORING PLUG-IN
At this moment, a plug-in is available which is capable of detecting Refactorings via AST-
Rewrites [Passier et al., 2016]. The ’Retestoring’ plug-in uses the JDT, Aspect J and the
Equinox Weaving feature. Aspect J4 is a Java extension that adds Aspect-Oriented Program-
ming (AOP). This allows modularity across units regarding design concerns. Equinox Weav-
ing5 makes it possible to use a tracing aspect within a JDT plug-in. Combined, these tools,
extensions and features are used to trace refactorings.

The goal of the plug-in is to give advice about the state of tests after refactorings. The
combination of AST-Rewrites can be used to generate a (generic) advice. For example,
the extract method refactoring mentioned earlier, has as its main result a new (untested)
method. The advice would therefore be to create a similar method in the corresponding
test class [Passier et al., 2016]. Below, an example of a desired advice of the plug-in:

"Revise the test method or assertions for method ’public void myMethod(int a, int b)’. Create
a new test method for the new method ’public void

myNewMethod(int a, int b)’ in the JUnit class for type ’public class MyClass’ use knowledge
from test method or assertions for method ’public void

myMethod(int a, int b)’" [Passier et al., 2016].

There are, however, many possible refactorings (combinations of AST-Rewrites), which
result in many possible advisable solutions. Previous research lists important AST-Rewrite
combinations, with the corresponding generic advice on some refactorings [Passier et al.,
2016]. However, this is just a first concept. Additionally, to give a more precise advice, it
is important to take a closer look at the listed rewrite combinations. The main goal of this
research is to create an as detailed as possible advice on how to maintain the tests, based
on these AST-Rewrites (combinations).

2.8. ECLIPSE
This research is in particular focused on the Eclipse for Java IDE. The main reason is be-
cause the Eclipse for Java IDE build-in automated refactorings use the AST of the workspace
to perform refactorings. Thus, a refactoring is essentially a set of AST-Rewrites, or in case
of a small refactoring, one single AST-Rewrite.

It is possible to track AST-Rewrites as a result of a refactoring. It is not of great im-
portance whether the refactoring is automatic or automated, as long as the changes are
processed using AST-Rewrites. During a refactoring, rewrites on the AST can be traced with
the use of the corresponding ’Rewrite Listener’. The rewrite event gives information about
the parent node, which property changed, the type of change and the changed node itself3.

Because these AST-Rewrites are already part of the process, it would be most logical to
make use of them instead another standard.

2.9. SUMMARY
In this chapter, we described that a bad smell can be resolved with a refactoring. Addi-
tionally, we provided example situations to elucidate when and how to refactor. We dis-
cussed that refactorings are not always directly applicable, and that a bad smell sometimes

4https://eclipse.org/aspectj/
5http://www.eclipse.org/equinox/weaving/

https://eclipse.org/aspectj/
http://www.eclipse.org/equinox/weaving/

2.9. SUMMARY 15

requires multiple (other) refactorings in order to be resolved. We have shown that a refac-
toring can be decomposed into a set of smaller changes, which can be presented as either
micro-refactorings or AST-Rewrites. For this research we decided to use AST-Rewrite, be-
cause our target IDE already uses this technique to perform refactorings. Fortunately, the
’Retestoring’ plug-in already tracks these rewrites for us, which provides us a great starting
point for the advice determination. Lastly, we described that we focus on black-box unit
tests for the JUnit test environment.

3
AST-REWRITE TYPES

In this chapter, we are going to further explain AST-Rewrites by examining their content.
We provide several refactoring examples, were we focus on the corresponding AST-Rewrite
output, provided by Retestoring plug-in.

Every refactoring results in a certain set of AST-Rewrites. A larger refactoring requires
more rewrites. Rewrites are presented in a ’Rewrite group’, which is essentially a set of
AST-Rewrites. The rewrite groups are dependent on the implementation of the refactor-
ing in Eclipse. Therefore, a rewrite group may or may not bear the name of its refactoring.
It is also possible that a refactoring is divided into several separated rewrite groups. The
Retestoring plug-in does show the rewrite groups, but due to the refactoring implementa-
tion inconsistencies in Eclipse, these barely have any value. Therefore, we will not include
the rewrite groups in the following examples.

3.1. AST-REWRITE ATTRIBUTES
Rewrites are often described as a change on a node. In a previous chapter, we mentioned
that a node can represent different code elements, for example a class or a method. The
node in which the rewrite took place is called the parent node. For example, in case of
a rewrite describing a method insertion, the corresponding class is the parent node. An
AST-Rewrite consist of several attributes, each describing a different part of the rewrite.

• Changed node
The first attribute of a rewrite is the ’Changed node’, which is the parent node that
has been changed.

• Property
The second attribute is the node’s changed ’Property’. This attribute describes which
sub element of the ’Changed node’ changed. The two attributes together describe
where the change happened. For example, a method declaration (node type) has it’s
body (property) changed.

• Change
The ’Change’ attribute reflects the type of change on the node. There are five dis-
tinct change types: insert, remove, replace, insert with placeholder and replace with
placeholder.

16

3.2. EXAMPLE REFACTORINGS 17

– Insert describes the insertion of a new node into the AST.

– Remove describes the removal of a node in the AST.

– Replace describes the overwrite of a node the AST in with another (new) node.

– Insert with placeholder describes the insertion of a new node into AST, in par-
ticular a node with values derived from another node.

– Replace with placeholder describes an overwrite of a node the AST in with an-
other (new) node, in particular a node with values derived from another node.

• Original value
The ’Original value’ attribute represents the changed value before the actual change.

• New value
The ’New value’ attribute represents the value after the change.

• Placeholder value
The ’Placeholder value’ functions as a data hold during a move or replace, to tem-
porarily ’store’ a value (as String) until it is used elsewhere.

There are many different attribute combinations possible, which results in at least 12,500
different types of AST-Rewrites. As the goal is to give advice based on these rewrites, it is
important to research the possible distinct AST-Rewrite types. It is also important to note
that we are initially limited to the available automated refactorings in the Eclipse IDE.

3.2. EXAMPLE REFACTORINGS
To get a better idea of what data AST-Rewrites contain in case of a refactoring we will now
provide some examples. These examples show the AST-Rewrite output of the Retestoring
tool as result of a refactoring. There are, however, a few things worth noting. First, the
AST-rewrite output is listed in no particular order, so in these examples we manually put
the rewrites in a better readable order. Second, we manually added a description for all
AST-Rewrites to make the examples easier to understand. This description is obviously not
available in the plug-in output. Third, the type of a node (for example, the changed node
is a method declaration), is not listed in the AST-Rewrite output, however, in the plug-in
output, this type data is available.

3.2.1. EXTRACT METHOD
In this first example, the highlighted code will be extracted into the ’extM’ method.

18 3. AST-REWRITE TYPES

Extract method
Original code Refactored code

public MyCalculator (){
public int add(int x, int y){

return x + y;
}

}

public MyCalculator (){
public int add(int x, int y){

return extM(x, y);
}
private int extM (int x, int

y) {
return x + y;

}
}

AST-Rewrites
Changed
node

Property Change Original
value

New Value Placeholder

Insert a new empty method
public
class My-
Calculator
{...}

body-
Declarations

Inserted private
int extM
(int x,int
y){}

Extract the original method’s body to the new method
private
int extM
(int x,int
y){}

body Inserted
(place-
holder)

return; return x + y;

Replace the original method’s body with a call to the new method
public int
add(int
x, int
y){ return
x+y;}

body Replaced return x +
y;

return
extM(x,y);

Table 3.1: The AST-Rewrites of an ’Extract Method’ refactoring

The first rewrite is a changed type declaration node, in this case a class called ’MyCalculator’.
Its body declaration has changed; the method declaration ’private int extM (int x,int
y){}’ has been inserted. The second rewrite concerns a method declaration node. Here,
the body of the ’extM’ method has changed; the line ’return;’ has been inserted with
’return x + y’ as placeholder. The last rewrite is also a changed method declaration
node. Inside this method’s body property, something is replaced. The line ’return x +
y;’ is replaced with ’return extM(x,y)’.

It is important to understand the difference between an ’Inserted’ change, and an ’In-
serted with placeholder’ change. A regular inserted change is just a node insertion into the
syntax tree. The inserted with placeholder change however, hints to moved code. Take the
rewrites in this extract method refactoring example: the inserted with placeholder change
is a moved line of code, namely, ’return x + y;’ is extracted from the body of the ’add’
method to the body of the new ’extM’ method.

3.2. EXAMPLE REFACTORINGS 19

Table 3.2 elucidates the AST changes as a result of the ’Extract Method’ refactoring in
Table 3.1. A rectangle represents an AST node, an arrow points into the direction of the
node’s children. Gray colored rectangles indicate the specific changes due to the refac-
toring. The rewrite concerning the insertion of the new method is portrayed by the new
’MethodDeclaration’ node (and its corresponding sub nodes). The second AST-Rewrite
extracts a method’s body into this new method. This is portrayed by the new method’s
’Block’ node, which contains the extracted statements as children (in this case a ’Return-
Statement’). Last, the original method’s body is replaced with a call, which is shown by
the changed ’Block’ statements. The ’add’ methods block statements is still a ’ReturnState-
ment’, but contains a method invocation to the new ’extM’ method.

Keep in mind that not all AST-Node attributes are shown in the example diagrams in 3.2
due to space limitations.

The AST changes of an Extract Method
Before After

Table 3.2: The AST before and after the ’Extract Method’ example

3.2.2. INLINE METHOD
The second example is the ’Inline Method’ refactoring, which is the opposite of the ’Extract
Method’ refactoring. The highlighted line is the where the method call is replaced with its
body.

The first rewrite is replacing ’first’ in the ’multiply’ method’s body with ’MISSING’
and a placeholder value called ’number’. This seems a little odd, however, the replacement
’number’ is the variable in the ’square’ method’s call to the multiply method. This rewrite is
performed to find out that ’first * second’ is equal to ’number * number’. The second
rewrite shows the characteristics of the inline operation; replacing the ’multiply’ method
call in the ’square’ method’s body with the ’multiply’ method’s body. The last rewrite is
the removal of the inline method in the class’ body declaration. As you may notice, the
’replaced with placeholder’ change is similar to the inserted variant. However, instead of
only moving code, the original code is also replaced with moved code.

20 3. AST-REWRITE TYPES

Inline method
Original code Refactored code

public class MyCalculator {
public int square (int number){

return multiply(number,number);
}
public int multiply (int

first , int second){
return first * second ;

}
}

public class MyCalculator {
public int square (int number){

return number * number ;
}

}

AST-Rewrites
Changed
node

Property Change Original
value

New Value Placeholder

Link the variable first to number
public
int mul-
tiply(int
first, int
second){
return
first *
second; }

body Replaced
(place-
holder)

first MISSING number

Inline the original method’s body on the location of the method call
public int
square(int
number){
return
multi-
ply(number,
number); }

body Replaced
(place-
holder)

return
multi-
ply(int
first, int
second);

return; return num-
ber * num-
ber;

Remove the original method
public
class
MyCalcula-
tor{...}

body-
Declarations

Removed public
int mul-
tiply(int
first, int
second)
{return
first *
second;}

Table 3.3: The AST-Rewrites of an ’Inline Method’ refactoring

3.2. EXAMPLE REFACTORINGS 21

3.2.3. MOVE METHOD
In this third example, the highlighted method is moved to the ’MyNewCalc’ class. The first
rewrite is a type declaration; a class which body declaration changed due to a new method
declaration being inserted. The second rewrite is also a type declaration; a class which
body declaration changed due to a removed method declaration.

Move method
Original code Refactored code

public MyCalculator (){
public static int add(int x, int y) {

return x + y;
}

}

public MyCalculator (){
}

public class MyNewCalc {
public static int add(int x,

int y){
return x + y;

}
}

AST-Rewrites
Changed
node

Property Change Original
value

New Value Placeholder

Move the method to the new location
public
class
MyNew-
Calc{}

body-
Declarations

Inserted
(place-
holder)

void MISS-
ING();

public static
int add(int
x, int y){
return x+y;}

Remove the method at the original location
public
class
MyCalcula-
tor{...}

body-
Declarations

Removed public
static int
add(int
x, int
y){ return
x+y;}

Table 3.4: The AST-Rewrites of a ’Move Method’ refactoring

3.2.4. MOVE METHOD ALTERNATIVE
These previous examples only show a few rewrites because of the simplicity of the code. A
more complex program would result in a slight variation with additional AST-Rewrites. The
following example will illustrate this assumption.

Move method
Original code Refactored code

22 3. AST-REWRITE TYPES

public class MyCalculator {
public static int multiply(int

x, int y) {
return x * y;

}

public int square (int x) {
return multiply (x, x);

}

public int cube(int x) {
return multiply (multiply (x,

x), x);
}

}

public class myClass {
public void calculations (){

// Static access
int value =

MyCalculator . multiply (1,
2);

// Regular access (for test
only)

MyCalculator calculator =
new MyCalculator ();

value =
calculator . multiply (1, 2);

}
}

public class MyNewCalc {
public static int multiply (int

x, int y) {
return x * y;

}
}

public class MyCalculator {
public int square (int x) {

return MyNewCalc . multiply (x,
x);

}

public int cube(int x) {
return MyNewCalc . multiply (

MyNewCalc . multiply (x, x),
x);

}
}

public class myClass {
public void calculations (){

// Static access
int value =

MyNewCalc . multiply (1, 2);
// Regular access now changed

to static access as well
MyCalculator calculator =

new MyCalculator ();
value =

MyNewCalc . multiply (1, 2);
}

}

AST-Rewrites
Changed
node

Property Change Original
value

New Value Placeholder

Move the method to the new location
public
class
MyNew-
Calc{}

body-
Declaration

Inserted
(Place-
holder)

void MISS-
ING();

public static
int multi-
ply(int x, int
y) { return x
* y; }

Replace the regular access method call to meet the new location
public
void cal-
cula-
tions()
{...}

body Replaced calculator MyNewCalc

3.3. MORE EXAMPLE REFACTORINGS 23

Replace the static access method call to meet the new location
public
void cal-
cula-
tions()
{...}

body Replaced My-
Calculator

MyNewCalc

Insert the static access to the method calls to meet the new location
public int
cube(int
x) {...}

body Inserted MyNewCalc

public int
square(int
x) {...}

body Inserted MyNewCalc

public int
cube(int
x){...}

body Inserted MyNewCalc

Remove the method at the original location
public
class
MyCalcula-
tor{...}

body-
Declaration

Removed public static
int multi-
ply(int x, int
y) { return x
* y; }

Table 3.5: The AST-Rewrites of a ’Move Method’ refactoring (alternative)

The example in Table 3.5 shows that a larger code example results in similar overall
rewrites. Just as the example in Table 3.4, there are two rewrites concerning the moved
code. Additionally we added calls to the moved method, which results in additional AST-
Rewrites. In this example the method calls, ’multiply()’, ’MyCalculator.multiply()’
and ’calculator.multiply()’ all change to ’MyNewCalc.multiply()’. We could use ad-
ditional references to the changed method in all examples, but as this example already
shows, this would result in multiple of the same replace or insert rewrites to repair the
reference to the changed method.

3.3. MORE EXAMPLE REFACTORINGS
Now that we have seen several method refactorings, we now provide additional examples
of different rewrites. We are however, limited to those refactorings available in the Eclipse
IDE. Large refactorings as ’separation of the domain logic from the presentation logic’ are
not supported. Mainly, because these larger refactorings are difficult to automate due to
the required code knowledge and understanding.

3.3.1. INTRODUCE FACTORY
The ’Introduce Factory’ refactoring (Table 3.6) makes the highlighted constructor private
and creates a static factory method. This refactoring is therefore also known as the ’Replace
Constructor with Factory Method’ refactoring [Fowler et al., 1999]. This refactoring leads to

24 3. AST-REWRITE TYPES

several rewrites, most of which are similar to those in previous examples. However, this
refactoring also includes a not previously seen refactoring; a method declaration type with
a changed ’modifiers’ property. In this case, these AST-Rewrites represent the change in the
constructor’s access modifier from ’public’ to ’private’.

Introduce factory
Original code Refactored code

public class Car {
public Car() {

}
public void newCar () {

Car car = new Car ();
}

}

public class Car {
public static Car createCar () {

return new Car ();
}
private Car (){
}
public void newCar () {

Car car = createCar ();
}

}

AST-Rewrites
Changed
node

Property Change Original
value

New Value Placeholder

Insert the factory method
public
class
Car{}

body-
Declarations

Inserted public
static Car
create-
Car() {
return new
Car(); }

Replace the constructor call with a factory method call
public
void New-
Car{...}

body Replaced new Car() createCar()

Change the constructor’s access modifier from public to private
public
Car{}

modifiers Inserted private

public
Car{}

modifiers Removed public

Table 3.6: The AST-Rewrites of an ’Introduce Factory’ refactoring

3.3.2. INTRODUCE PARAMETER
The ’Introduce Parameter’ refactoring is also known as the ’Add Parameter’ refactoring, and
is essentially nothing more than creating a parameter for a local value. This introduces a
’parameters’ property change, which adds the local variable as parameter to its method.
In this case the variable name in the ’setName’ method is changed to a method parameter
called ’personName’. See Table 3.7.

3.3. MORE EXAMPLE REFACTORINGS 25

Introduce parameter
Original code Refactored code

public class Person {
String name;

public void createPerson (){
setName ();

}

public void setName (){
name = "John";

}
}

public class Person {
String name;

public void createPerson (){
setName (name);

}

public void setName (String
personName){

personName = "John";
}

}

AST-Rewrites
Changed
node

Property Change Original
value

New Value Placeholder

Introduce parameter to method
public
void set-
Name{...}

parameters Inserted String
PersonName

Change parameter value in method call
public
void cre-
atePer-
son{...}

body Inserted
(place-
holder)

MISSING name

Replace variable with parameter
public
void set-
Name{...}

body Replaced name PersonName

Table 3.7: The AST-Rewrites of an ’Introduce Parameter’ refactoring

3.3.3. EXTRACT SUPERCLASS
This example shows an AST-Rewrite for the creation of a new class. The ’Extract Superclass’
refactoring extracts methods or variables from a class and puts them in a new superclass.
In this case (Table 3.8) we create a ’Fruit’ supertype for the ’Apple’ class. Its ’eat’ method
and ’color’ variable will be extracted to the superclass. Most notably is the AST-Rewrite
regarding the ’superclassType’ property, which describes the addition of ’extends Fruit’
to the ’Apple’ class.

26 3. AST-REWRITE TYPES

Extract superclass
Original code Refactored code

public class Apple{
String color;

public void eat() {
// ...

}
}

public class Apple extends Fruit{
}

public class Fruit {
String color;
public Fruit () {

super ();
}
public void eat () {

// ...
}

}

AST-Rewrites
Changed
node

Property Change Original
value

New Value Placeholder

Create new superclass
public
class
Fruit{...}

body-
Declarations

Inserted public
Fruit{
return; }

Let the original class inherit from the superclass
public
class Ap-
ple{...}

superclass-
Type

Inserted Fruit

Insert extracted code elements into the superclass
public
class
Fruit{...}

body-
Declarations

Inserted MISSING
color;

public
class
Fruit{...}

body-
Declarations

Inserted public
MISSING
eat(){}

Remove extracted code elements from the original class
public
class
Apple
extends
Fruit{...}

body-
Declarations

Removed String
color;

public
class
Apple
extends
Fruit{...}

body-
Declarations

Removed public
void
eat(){}

Table 3.8: The AST-Rewrites of an ’Extract Superclass’ refactoring

3.3. MORE EXAMPLE REFACTORINGS 27

3.3.4. EXTRACT CLASS
The last example is the ’Extract Class’ refactoring in Table 3.9. This refactoring divides re-
sponsibilities between classes, in this case the variable ’wheelSize’ is extracted to a sep-
arate class ’Wheel’. This rewrite introduces two properties we have not mentioned yet.
Firstly, the ’types’ property indicates a new node type, in this case the creation of the new
’Wheel’ class. The ’fragments’ property concerns changes to fields, in this case the removal
of the ’wheelSize’ field. The remainder of the rewrites are similar to those in previous
examples.

Extract class
Original code Refactored code

public class Bicycle {
int wheelSize;
public void ride (){
}

}

public class Bicycle {
Wheel data = new Wheel ();
public void ride (){
}

}

public class Wheel {
public int wheelSize ;

public Wheel () {
}

}

AST-Rewrites
Changed
node

Property Change Original
value

New Value Placeholder

Extract code element into new class
public
class
Wheel{}

types Replaced class
Wheel{}

class
Wheel{
public int
wheelSize;
... }

Remove code element from original class
int wheel-
Size;

fragments Removed wheelSize

public
class Bi-
cycle{...}

body-
Declarations

Removed int wheel-
Size;

Insert the instantiation of the new class into the original class
public
class Bi-
cycle{...}

body-
Declarations

Inserted Wheel
data = new
Wheel();

Table 3.9: The AST-Rewrites of an ’Extract Class’ refactoring

28 3. AST-REWRITE TYPES

3.4. CONCLUSION
So far, we have seen many different AST-Rewrites and the including attributes. Examples
show that the property attribute together with the changed node exactly show which piece
of the code changed. The property and changed nodes show the location of the change.
The change attribute, containing one of five different operations, describes how that piece
of code changed. The value attributes are different for every change, because these contain
the actual code of the change, which is mostly situation specific. In Table 3.10, we visualized
these attribute connections. Certain attribute combinations (changed node and property)
are already recurring in the given examples. For instance, every method refactoring has a
rewrite with a changed ’class type’ node and a changed ’body-Declaration’ property. These
common combinations are valuable for the next step; the impact of a refactoring on a test.

AST-Rewrite attributes
Parent node Property Change Original

value
New value Placeholder

Context of the rewrite Changes in the code Moved code

Table 3.10: The AST-Rewrites attributes and their informational value

Based on the examined output of the plug-in we can now answer our first research ques-
tion.

RQ1: Which different output combinations can the plug-in return?
The plug-in output as a result of a refactoring consists of a combination of at least

one AST-Rewrite. An AST-Rewrite consists of the following attributes combination: the
’changed node’, the ’changed property’, the change (operation), the original value, new
value and placeholder value. The changed node can be any of the listed ASTNode1 types.
Whereas the changed property can be any of classes listed in the AST/DOM2 package. The
change is always one of five operations (insert, replace, remove, insert with placeholder
and replace with placeholder), which means other changes as move, extract or inline have
to be constructed with multiple separate rewrites. The attribute values (new and original)
are either empty or a value of an ASTNode type. The placeholder is always a ’String’-type,
and is either empty or a string representation of an ASTNode type value.

It is unrealistic to list all different AST-Rewrite output combinations. Although the amount
of different combinations is limited by the finite amount of AST-Rewrite attribute combi-
nations and automated refactorings in Eclipse, the environment (source code situation) in
which a refactoring is performed, may result in countless (slight) variations, even whilst a
certain refactoring (in general) results in a similar combination of rewrites.

1http://help.eclipse.org/luna/index.jsp?topic=/org.eclipse.jdt.doc.isv/reference/api/
org/eclipse/jdt/core/dom/ASTNode.html

2http://help.eclipse.org/kepler/index.jsp?topic=/org.eclipse.jdt.doc.isv/reference/
api/org/eclipse/jdt/core/dom/package-summary.html

http://help.eclipse.org/luna/index.jsp?topic=/org.eclipse.jdt.doc.isv/reference/api/org/eclipse/jdt/core/dom/ASTNode.html
http://help.eclipse.org/luna/index.jsp?topic=/org.eclipse.jdt.doc.isv/reference/api/org/eclipse/jdt/core/dom/ASTNode.html
http://help.eclipse.org/kepler/index.jsp?topic=/org.eclipse.jdt.doc.isv/reference/api/org/eclipse/jdt/core/dom/package-summary.html
http://help.eclipse.org/kepler/index.jsp?topic=/org.eclipse.jdt.doc.isv/reference/api/org/eclipse/jdt/core/dom/package-summary.html

4
RESULTS ON TESTS

In this chapter we take a look at the process on how to determine the result of a refactoring
on tests, which is an important part in determining the advice. In order to make the advice
process better understandable, we divide process into four sub processes. This chapter
describes the first two processes; code change analysis and test impact analysis. For each
sub process we create a set of rules, which followed, should provide the next process with
sufficient data.

4.1. IMPACT ON CORRECTNESS OF TESTS
When the main code changes, the functionality of the tests may or may not remain correct,
dependent on the change. In this case, the term ’correctness’ of tests, means that main code
and the corresponding tests should match. For example, this means that all public methods
have a corresponding test, but also that there are no tests for private or even nonexistent
methods.

To determine the result of a refactoring on a test, we should determine the result of the
refactoring on the code first. The result on the tests is almost identical to the result of the
initial refactoring on the code itself [van Deursen and Moonen, 2002]. If you extract part
of a method’s body into a separate method, you could extract that particular part of the
corresponding test method into a separate test as well.

In our case however, we assume that all tests are black-box tests. This means that the
test method only contains something in the lines of 1. initialization of the input, 2. a call to
the corresponding method and 3. assertion of the output. Due to this test specific structure,
performing a refactoring on a black-box test is no valid option.

The phrase ’results on tests’ is used to describe the impact of changes in the source
code on the corresponding test code. This result creation can be divided into several steps:

• Code Change Analysis
Describes the change in the source code.
Example: Removed a public method A from class X.

• Test Impact Analysis
Describes the effect of the change on its corresponding test.
Example: Unused test method ATest in test class Xtest.

29

30 4. RESULTS ON TESTS

• Advice
Describes the action(s) a user has to perform in order to correct the tests.
Example: Remove test method ATest from test class Xtest.

• Presentation
Describes how the system presents the advice to the user.
For example: different languages or in keywords instead of full sentences.

4.2. LIMITATIONS AND CODE ASSUMPTIONS
Each individual refactoring has an expected ’standard’ result which holds in most cases. In
case of an ’Extract Method’, we can assume that we end up with a new method that requires
a test. We will refer to this assumed standard (and generally applicable) result as the global
result.

However, there are different constructs in the code and tests which can cause problems
when determining the result of a refactoring. There are cases where the global result is
not applicable. For example, if an extracted method has a private access type, the result is
different in contrast to a public method; private methods do not require a corresponding
test. We will list some examples of cautions points for rewrites regarding a class with a
changed method declaration:

• Multiple test methods
When a regular method has multiple test methods, the result of a refactoring should
consider each test method. A naming convention for tests and test-variants could
make this problem easier. The standardized approach, is to use a ’parametrized test’
instead if applicable [Tahchiev et al., 2010]. However, tests with multiple assertions
or test classes with multiple test methods to test a single method are common prac-
tice and are not necessarily wrong. Using this approach, one should be wary of test
smells. In this particular case, potential smells are "Lazy test" or "Assertion Roulette"
[van Deursen et al., 2001]. Another issue is the opposite of the above; one test method
for more than one test. This is a test smell called an "Eager Test" [van Deursen et al.,
2001]. The developer should extract the test code for another method in a separate
method, as we do not support eager test constructions.

• Visibility of the method
A private method does not have a direct corresponding test in black-box testing.
Therefore, when a private method changes, this does not necessarily impact the tests.
An additional check for the visibility of a changed method would solve this case. In
case of a regular untested private method, a change is not a necessity.

• No corresponding test method
When the change includes a visible method, and no corresponding test method is
found, the result would still be an untested method, even if the method is not ’new’.
Errors, for example, putting the test method in the wrong test class are the developer’s
responsibility. In future work, we could add a notification to address the developer of
this issue.

• Method overloading
When an overloaded method is changed, the result only applies to that particular

4.2. LIMITATIONS AND CODE ASSUMPTIONS 31

corresponding test. An additional check regarding the method’s parameters should
result in finding the correct corresponding test method.

• Inheritance
In this case, the same problem as the overloading applies; finding the corresponding
test method. For example, when a sub class’ method has been removed, this does
not automatically imply that all tests for that method should be removed. The global
result solely applies when the subclass has a distinct test method. In most cases, no
change is necessary if you test through an interface. An exception to this rule occurs
when the change concerns a subclass’ own additional methods.

You may notice that method declarations changes already provide several special cases,
which need additional checks in order to give a more precise and correct result on tests.
As we have at least twelve thousand different AST-Rewrite combinations, listing each and
every special case would be impossible. However, we can summarize different issue cate-
gories, for example, most issues mentioned above concern finding the (correct) test class
and test method. Other concerns are exceptional cases where none or more than one test
is present, or a case where the result is that there is no change necessary.

Exceptional cases are easier detectable, or can be ignored, if we use the following as-
sumptions:

1. Each public class, containing one or more public methods, has a corresponding test
class.

2. Each public method has exactly one corresponding unit test.

3. Each test method solely concerns an existing public method.

4. Each test method is located in the correct corresponding test class.

5. Each test method has exactly one assertion.

6. Each test method solely focuses on the functionality of its corresponding method.

7. Each test class and test method uses the following naming convention: name of class
or method followed by suffix ’Test’.

8. Method overloading is not supported.

Using these assumptions, we can now focus on a basic scenario, instead of exceptional
cases. This is a necessity because many of these exceptions to the global result require
additional knowledge of the test structure. The Retestoring plug-in is currently not capable
of analyzing the structure of the test itself, therefore these exceptions are out of scope for
our current research. This does however not imply that these exceptional cases are less
meaningful, as solving these special cases is important future work.

Additionally, we want to point out that, code structures which are considered ’bad prac-
tice’ by the ’Java Coding Convention’, will obviously also not be supported. Examples are:
optional parameter structures and public inner-class types, but also public fields (which is
situation dependent). Future work therefore includes, detecting these ’bad practices’ be-
fore refactoring.

32 4. RESULTS ON TESTS

4.3. CODE CHANGE ANALYSIS

4.3.1. CHANGE DATA COLLECTION
In order to determine which changes have been applied to the source code, we use the
change data and examine it for the required information. There are two large data inputs
to work with: the refactoring data and the AST-Rewrites.

AST-REWRITES

The AST-Rewrite data can be used in order to determine resulting information and thus the
exact change. As a human being, reading the rewrite output of previous examples and try-
ing to comprehend the actual change comes close to solving a puzzle. In our own attempt
to read and understand AST-Rewrites, we link rewrites together, sometimes without realiz-
ing it. A link is a matching attribute value in the AST-Rewrite data. The main reason for
this approach is because a single AST-Rewrite on itself is less valuable. We will explain this
statement with an example.

Table 4.1 shows the raw AST-Rewrite output as a result of an ’Extract Method’ refactor-
ing. The rewrites are presented in the same way as we obtain them from the Retestoring
plug-in; listed in no particular order, and without detailed ’before’ and ’after’ code. Note
that the node type is available but is not shown in the table due to layout constraints.

Extract Method AST-Rewrites
Changed

node
Property Change Original

value
New Value Placeholder

1 public
int
add(int
x, int
y){ re-
turn
x+y;}

body Replaced return x
+ y;

return
extM(x,y);

2 public
int extM
(int
x,int
y){}

body Inserted
(place-
holder)

return; return x + y;

3 public
class My-
Calcula-
tor{...}

body-
Declarations

Inserted public
int extM
(int
x,int
y){}

Table 4.1: The AST-Rewrites of an ’Extract Method’ refactoring

If we look at the rewrites individually, we should determine the impact of that particular
rewrite on the code. Rewrite #1 shows that a methods body has changed. Rewrite #2 also
concerns a method which body has changed. Rewrite #3 is an insertion of a method into a
class. So the global change is: two changed method bodies and one new method.

4.3. CODE CHANGE ANALYSIS 33

If we take a closer look, it seems that rewrite #2 and #3 describe a change on the same
method. So the previous determined global result is incorrect and imprecise. In this case,
it is important to conclude that rewrite #2 fills the new method created in rewrite #3, and
therefore the results of both AST-Rewrites can be combined. This shows that using the indi-
vidual results of rewrites is no viable option, as the relation between rewrites also contains
valuable information. If we would consider the changed code values (new value, original
value and placeholder value), we could even link rewrite #1 to the other two rewrites in or-
der to describe the change with even more detail. The replaced code of rewrite #1 is in fact
the new method’s body.

We can conclude that without links between rewrites, we end up with a global and
imprecise advise. We need the links between rewrites to find out if, for example, code has
moved. The links provide the details to separate a move rewrite from a set of unrelated
insert and remove rewrites. Additionally, in case of a move, we can use the origin of the
moved (new) value for a even more detailed result conclusion.

However, it is difficult to map rewrite links. Each refactoring results in different rewrites
with different links. As you may notice, links occur between different attributes and differ-
ent code elements. In the ’Extract Method’ example of Table 4.1, there are three links.

1. The first link is the changed node of rewrite #2 and the new value of rewrite #3.
This link shows a change on the same method, but it does help to reveal which refac-
toring has been performed.

2. The second link is between the new value of rewrite #1 and the new value of rewrite
#3.
This link shows the replacement of some code with a method call, and the insertion
of that particular method. This is a characteristic of the ’Extract Method’ refactoring.
The challenge is to compare the different code types: one value is a method call as a
return type, the other a method declaration.

3. The last link is the placeholder data of rewrite #2 and the original value of rewrite #1.
This link shows the extraction of the method’s body into a separate method. This is
also a characteristic of the ’Extract Method’ refactoring.

Based on the second (and also the third link), we can conclude that an ’Extract Method’
refactoring has been performed. Based on our knowledge of this refactoring we can con-
clude that:

• New method ’extM’ inserted into class ’MyCalculator’.

• Code of method ’add’ extracted to ’extM’ method.

Unfortunately, the usage of links between rewrites to determine the result on tests comes
with some challenges. Based on previous refactoring examples, we list possible challenges
below.

1. The first challenge is to create an approach for finding refactorings effectively. We
could create an approach with rules that specify each refactorings, for example: if
we have an inserted method rewrite, we can search for a rewrite with code replaced
by a method call to find out if an ’Extract Method’ refactoring took place. The prob-
lem with this approach is, due to the amount of possible refactorings and resulting
rewrites, we cannot specify cases for each and every rewrite combination.

34 4. RESULTS ON TESTS

2. The second challenge is its dependency on values to base links on. Values are dif-
ficult to compare. A regular line of code for example, can be changed into a return
statement or a variable declaration, and is therefore never a ’100%’ match. In addi-
tion, basing links on values as ‘return’, barely have value due to common use (as it is a
programming keyword). The question is where to draw the line what is considered as
still useful values, as there are situations where a link can consist of a single variable
name.

3. Additionally, some values have to be interpreted first. This is necessary to conclude
that for example ‘return 6 * 6’ is similar to ‘return number * number’, which is of com-
mon occurrence in ’Inline Method’ refactorings. Also, a comparison with a place-
holder value may require additional interpreting, as a placeholder is a ’String’.

4. The fourth challenge is the fact that not all links are (equally) valuable. Some links
simply have no characteristics of refactorings. Other links are based on ’accidental’
matches, which could be the case due to common values as ‘0’ or keywords as ‘return’.
In some occasions, invaluable links occur on placeholder rewrite by-products, which
are the MISSING value rewrites to preserve references.

5. The last challenge is that we still need additional checks for special situations. For
example, to check if a method changed visibility (access modifier), or if an ’Inline
Method’ refactoring removed the original method. Having additional checks for each
and every special case is in the long term unmaintainable.

REFACTORING DATA

The refactoring data consists of the refactoring parameters when performing a refactoring
via the refactoring ’menu’ in Eclipse. One part is constructed with the input a user inputs
in a refactoring menu (Figure 4.1) and the location of the caret in the source code. The
second part is determined by the changes of a particular refactoring. The refactoring data
can include the following information: the location of the refactoring (code elements), the
project’s name, a description of the refactoring and/or change, and the changed values. It
is important to note that all values are ’String’ representations, and not the actual objects.

Refactoring data can be collected by using the ’Refactoring Execution Listener’1 and
’catch’ the refactoring when it is performed. The corresponding ’Refactoring Descriptor’2

can then be queried for the refactoring data. As example, we perform the ’Inline Method’
refactoring of Table 3.3 again. Table 4.2 shows the refactoring data after the inline opera-
tion.

The refactoring data starts with a description of the change, in this case it describes the
inline. The following lines in the data indicate the location of the change. The last data
lines describe additional changes of that particular inline refactoring, which, in this case, is
the removal of the inline method and the resolving of all references to that method.

Figure 4.1 shows an example of the ’Change Method Signature’ refactoring in eclipse.
This is essentially a combination of some of the ’Making Method Calls Simpler’ type refac-
torings [Fowler et al., 1999] presented in a single menu. Dependent on the refactoring

1http://help.eclipse.org/kepler/topic/org.eclipse.platform.doc.isv/reference/api/org/
eclipse/ltk/core/refactoring/history/IRefactoringExecutionListener.html

2http://help.eclipse.org/kepler/topic/org.eclipse.platform.doc.isv/reference/api/org/
eclipse/ltk/core/refactoring/RefactoringDescriptor.html

http://help.eclipse.org/kepler/topic/org.eclipse.platform.doc.isv/reference/api/org/eclipse/ltk/core/refactoring/history/IRefactoringExecutionListener.html
http://help.eclipse.org/kepler/topic/org.eclipse.platform.doc.isv/reference/api/org/eclipse/ltk/core/refactoring/history/IRefactoringExecutionListener.html
http://help.eclipse.org/kepler/topic/org.eclipse.platform.doc.isv/reference/api/org/eclipse/ltk/core/refactoring/RefactoringDescriptor.html
http://help.eclipse.org/kepler/topic/org.eclipse.platform.doc.isv/reference/api/org/eclipse/ltk/core/refactoring/RefactoringDescriptor.html

4.3. CODE CHANGE ANALYSIS 35

Inline Method refactoring data
Inline method ’MyCalculator.multiply()’ in ’MyCalculator’
Original project: ’MyProject’
Original element: ’MyCalculator.multiply()’
Remove method declaration
Replace all references to method with statements

Table 4.2: The data of an ’Inline Method’ refactoring

Figure 4.1: Refactoring Input Parameters

36 4. RESULTS ON TESTS

Change Method Signature Refactoring data
Change method ’public int myClass.method1(int param, int param2)’ to
’private String method2(int a, double b)’
Original project: ’MyProject’
Original element: ’myClass.method1(...)’
New name: ’method2’
New visibility: ’private’
New return type: ’String’
Removed parameters: int param2
Changed parameters: int a
Added parameters: double b

Table 4.3: Example refactoring data of a ’Change Method Signature’ refactoring

Move Method Refactoring data
Move method ’class1.add(...)’ to ’class1.c2’
Original project: ’MyProject’
Original element: ’class1.add(...)’
Moved method: N/A
Target element: ’class1.c2’
Method name: ’add’

Table 4.4: Example refactoring data of a ’Move Method’ refactoring

and the Eclipse implementation of that particular refactoring, these refactoring parame-
ter screens may contain valuable information. However, not all input values indicate an
actual change, for example, we can choose to change the method’s parameters, but keep its
name intact. This also means that, if the method’s name has not been changed, the refac-
toring data does not contain that particular section. This example is valuable because it
shows that refactorings have different variants, and one refactoring menu can trigger mul-
tiple different refactorings. Performing the ’Change Method Signature’ refactoring in Figure
4.1 results in the following example data of Table 4.3.

COMBINING AST-REWRITES AND REFACTORING DATA

By examining the refactoring data, it becomes evident that the data itself is not always com-
pletely sufficient to determine the exact change on the code. For instance, the refactoring
data in Table 4.4 describing a ’Move Method’ refactoring does not provide sufficient data.
The reason is the unclear target element: it refers to a class’ declaration ’c2’ in ’class1’, in-
stead of the actual target location ’class2’. The corresponding AST-Rewrites of this refac-
toring in Table 4.5 show the correct target location.

Thus, refactoring data on itself is not always sufficient. However, it provides us a head
start for determining the result. It shows us which refactoring took place and where in the
source code the changes happened. AST-Rewrites theoretically contain sufficient informa-
tion to determine the exact change. However, there are some shortcomings to overcome
in regard to using matching values as linked data. Combining AST-Rewrite data with the
refactoring data, may resolve some of the current problems. This approach is not free of
challenges either, as the refactoring data is not ideal to work with; since it is a mere ’String’

4.3. CODE CHANGE ANALYSIS 37

Move method AST-Rewrites
Changed
node

Property Change Original
value

New Value Placeholder

public
class
class2{}

body-
Declarations

Inserted
(place-
holder)

void MISS-
ING();

public int
add(int
x, int y){
return x+y;}

public
class
class1{...}

body-
Declarations

Removed public int
add(int
x, int
y){ return
x+y;}

Table 4.5: The AST-Rewrites of a ’Move Method’ refactoring

Figure 4.2: Refactoring Data Flow

representation. Nevertheless, the refactoring characteristics can still be used to narrow the
search for particular additional data in AST-Rewrites.

4.3.2. DETERMINE EXACT CHANGE
In the following subsections we will provide the part of the approach for determining im-
pact of a change on the correctness of the tests. This part consists of steps for determining
the exact change on the source code. Figure 4.2 shows the refactoring data flow. The in-
put comes from two sources: the refactoring data (gathered by a custom plug-in for the
Eclipse IDE) and the AST-Rewrite Retestoring plug-in data. The ’Change Analysis Module’
has several tasks with the main purpose to extract the desired change attributes from the
input data and send these to the ’Change Determination Module’. The ’Changes object’
describes the data structure we need in order to determine the change.

EXAMINE REFACTORING DATA

The refactoring data provides quick access to the information we need in order to describe
the change. For example: the description of the refactoring tells us which refactoring has
been performed and on what code element. However, this information is stored in the
’RefactoringDescriptor’ object. Therefore, we need some sort of module to extract the
necessary data from this object and convert it to our own standard. Additionally, we need

38 4. RESULTS ON TESTS

a function to determine if the refactoring data holds sufficient data in order to determine
the exact change. There are three states for the refactoring data:

1. Refactoring data is complete, which means that the required values in our changes
object can be filled with sufficient data.

2. Refactoring data is incomplete, which means that we rely on AST-Rewrites to fill in
the missing data.

3. Refactoring data is empty, which means that we solely use the AST-Rewrites to fill our
changes object.

EXAMINE AST-REWRITE DATA

The AST-Rewrite data can also be examined for (additional) information on the refactoring.
The refactoring data should (mostly) provide us with information what to search for. We
start by determining the highest priority rewrite.

In order to determine with which rewrite to start the process, some sort of prioritization
is necessary. If we know the initial refactoring, we can search for that particular rewrites.
We prioritize these rewrites first, as these rewrites contain the most important change. If
we do not know the refactoring, or we have (possible valuable) leftover rewrites, we have
to use a different prioritization. If we would encounter a problem like this ourselves, we
would try to finds the most important change first. In this case, this would be the rewrite
which results in the largest structural change. Something along the lines of: changes on the
class are larger than changes on the method. The thought behind this approach is to find
the change with the most impact on the structure first, and then find all related rewrites to
that change.

With this information we can now create a prioritized list of node types and its proper-
ties:

1. Known refactoring rewrite

2. Compilation Unit (file)

(a) Package: file (class) changed package.

3. Type declaration (classes)

(a) Name: name of class changed.

(b) Modifiers: visibility of class changed.

(c) Types: class itself changed as a whole.

(d) Package: class changed package.

(e) Super (interface/class): class changed to sub class, or former sub class is now a
regular class.

(f) Body declaration: class’ code body changed. Possibly contains valuable data.

4. Method declaration

(a) Name: name of method changed.

4.3. CODE CHANGE ANALYSIS 39

(b) Modifiers: visibility of method changed.

(c) Return type: return type of method changed.

(d) Parameters: parameters added or removed from method.

(e) Body: method’s code body changed. Possibly contains valuable data.

5. Other

Links only occur between the data attributes of the rewrite (changed node, original
value, new value and the placeholder). Based on the refactoring data information we may
know which element has been changed. Therefore we prioritize the search for the oper-
ation characteristics between the rewrite on that particular element and another rewrite.
For all remaining rewrites, the easiest way is to start with the changed node of the selected
rewrite, and check the changed node of other rewrites first. The order of checking other
rewrites does not matter, so searching from top to bottom will do. The next step is to keep
the changed node value as value to check and, this time, look at the original values of other
rewrites. Next, check the new values and thereafter the placeholders of the other rewrites.
After all other rewrite’s attributes have been checked, change the value to check to the orig-
inal value of the selected rewrite, and continue the process.

Thus, links are searched in order of similar AST-Rewrite attributes. Below the priority of
linking attributes and the reason:

1. Known refactoring attribute: known changed element.

2. Node: possibly part of the same or a larger structural change.

3. Original value: possibly shows origin of changed code.

4. New value: possibly shows destination of changed code.

5. Placeholder: possibly shows destination of changed code.

There is, however, an additional check necessary in order to find all links. In some occa-
sions, data values are not of the same type, but do link. For example, a method declaration
can be disguised as a method call, a return type or a variable declaration. This is even more
difficult in case of moved lines of code. The body of a method declaration may contain
lines of code that reappear in values of other rewrites. The problem is that this would re-
quire additional semantic analysis in order to determine a match. This problem occurs in
an inline method situation (see table 3.3), where moved is no longer textually identical due
to the use of a placeholder. Semantic analysis could however clarify that ’x * x’ and ’x *
y’ are similar if both ’x’ and ’y’ are integer values.

This leads to the following additional checks for each step of the search approach:

1. Same type: data of the same type. For example: a method declaration.

2. Other types: data regarding the same code element, but of the different types. For
example: a method declaration and a method call.

3. Partial: data that only partially matches. For example: code in a method’s body and
a placeholder value.

40 4. RESULTS ON TESTS

Most refactorings are primarily based on a certain ’operation’. The standard operations
are the ’change’ attributes of the AST-Rewrites: insert, replace and remove. The additional
operations are those that are a combination of the standard operations: move, extract and
inline. Operations generally have the same global characteristics. Therefore, we do not
have to make specific rules for each different refactoring. For example, a move operation is
a combination of a remove rewrite and an inserted with placeholder rewrite. Additionally
there are other attributes of the AST-Rewrite combination that have to match as well in
order to confirm a certain additional operation.

Based on the operation rules we can filter for valuable linked rewrites. Below, a list of
the different operations and their corresponding ’rules’:

Basic operations:

• Insert: new code

• Remove: code deleted

• Replace: code replaced with other code

Additional operations:

• Move: code removed at one place, and inserted at another place.

– Only if inserted (placeholder) rewrite placeholder value ≈ removed rewrite orig-
inal value, or

– Only if inserted (placeholder) rewrite placeholder value≈ replaced (placeholder)
rewrite original value.

• Extract: code replaced with a call to the replaced code inserted elsewhere.

– Only if inserted (placeholder) rewrite placeholder value ≈ replaced rewrite orig-
inal value.

• Inline: call replaced with code on location of call, call location code removed after-
ward.

– Only if replaced (placeholder) rewrite placeholder value≈ removed rewrite orig-
inal value, and

– Only if replaced (placeholder) original value ≈ removed rewrite original value.

4.3.3. CHANGE ANALYSIS MODULE
The change analysis module is the part where the ’raw’ data is filtered and converted to the
specified ’Changes’ object. Many tasks of this module lie beyond the goals of this research.
These tasks will therefore be listed as future work. Below, a list of challenges, to give a broad
idea on what issues need to be solved:

• Converting the refactoring data to the specified standard.

– Analyzing which data is required from AST-Rewrites.

• Converting (linked) AST-Rewrite data to the specified standard.

4.3. CODE CHANGE ANALYSIS 41

Figure 4.3: Change Data Flow

– Linking values that are not a perfect match, and/or are of different types.

– Filter rewrites that are unrelated to the refactoring or are a by-product of a refac-
toring.

We will however, provide the definition of the standard change object in the next sec-
tion. With the use of this object, we assume the data we receive has been resolved from the
previous listed challenges.

4.3.4. CHANGES OBJECT
The changes object describes the information we need in order to determine the change.
It functions as a communication standard between parts of the process. The previous sec-
tion describe the change data gathering process which is the first part of the process. This
information is used determine the exact change and later to also determine the result on
the tests and create the advice. Figure 4.3 shows the complete change data flow.

In order for the object to be of real value, we set the following requirements:

• The object should be version independent, which means that it should not matter
which Eclipse version and Retestoring plug-in version are used.

• The object should be ’realistic’ and therefore only rely on data that is actually proven
to be obtainable.

• The object should be usable for all Eclipse’s own available refactorings in the IDE.

In order to meet the requirements, we introduced the following universal specifications.
First and foremost, the refactoring data provides us with the initial refactoring description.
AST-Rewrites could provide the same information as well, but require additional process-
ing in order to determine that specific information. Second, we require information on the
changed code element. This could be provided partly by the refactoring data and fully by
the AST-Rewrite data (after some processing). The changed element data should contain
the following attributes: name, location, type (object), new value, change operation, orig-
inal value. In some cases, changes on one element induce other additional changes, for
example, to other code elements containing a reference to the changed element. These ad-
ditional changed elements are also of value, and require the same attributes as the (regular)
changed element.

Table 4.6 describes the contents of the ’Changes’ object. It consists of four main objects:

• Refactoring Descriptor
The refactorings descriptor provides a description of the performed refactoring.

42 4. RESULTS ON TESTS

• Changed Element
The changed element that describes the ’main’ (most important) change. It contains
several attributes, describing the change.

• Original Changed Elements
A list of changed element(s), as a result of the ’main’ change. All items in this list are
of the same type as the ’Changed Element’.

• Additional Changed Elements
A list of changed elements unrelated to the ’main’ change. All items in this list are of
the same type as the ’Changed Element’.

The ’Changed Element’ is always required to be filled for every refactoring situation.
The ’Original Changed Elements’ and ’Additional Changed Elements’ lists are however not.
If the operation on the ’Changed Element’ is of a type that consists of multiple AST-Rewrites
(move, extract, inline), the ’Original Changed Elements’ list contains the fully filled ’Changed
element’ counterpart. The ’Refactoring Description’ is only necessary for presenting the
change, not for determining the advice.

4.3.5. CHANGE DETERMINATION
The ’Change Determination’ module is the module behind the ’Changes’ object. This mod-
ule’s essential task is to list all changes to the source code based on the data input. For sub-
sequent steps in the process, the ’Changed Element’ object provides sufficient information.
However, it may be useful to also have a better human readable version of the change. Due
to this standardized the input format, it becomes easier to define generic a ’form’ for creat-
ing the change description.

CHANGE DESCRIPTION

The goal is to provide as much information on the change as possible in a human readable
manner. This means a description as for instance: ’Inline method Class1.method1(), all
statements replaced’, provides less usable information than for example: ’Class1.method1()
removed, Class1.method2() inline code’.

In order to create the change description, we use forms and try to fill these with data
attributes of the ’Changes’ object. A rule for describing the change, based on ChangedEle-
ment data:

• [RefactoringDescription]:[ChangedElementProperty] property of [ChangedElement-
Type], [ChangedElementName], in [ChangedElementLocation] changed. New value:
[ChangedElementNewValue] of type [ChangedElementNewValueType], [ChangedEle-
mentOperation] at old value [ChangedElementOriginalValue] of type [ChangedEle-
mentOriginalValueType].

3http://help.eclipse.org/kepler/index.jsp?topic=/org.eclipse.platform.doc.isv/
reference/api/org/eclipse/ltk/core/refactoring/RefactoringDescriptor.html

4http://help.eclipse.org/luna/index.jsp?topic=/org.eclipse.jdt.doc.isv/reference/api/
org/eclipse/jdt/core/dom/ASTNode.html

5http://help.eclipse.org/luna/index.jsp?topic=/org.eclipse.jdt.doc.isv/reference/api/
org/eclipse/jdt/core/dom/ASTNode.html

6Custom enum describing the operation (insert, extract, etcetera)

http://help.eclipse.org/kepler/index.jsp?topic=/org.eclipse.platform.doc.isv/reference/api/org/eclipse/ltk/core/refactoring/RefactoringDescriptor.html
http://help.eclipse.org/kepler/index.jsp?topic=/org.eclipse.platform.doc.isv/reference/api/org/eclipse/ltk/core/refactoring/RefactoringDescriptor.html
http://help.eclipse.org/luna/index.jsp?topic=/org.eclipse.jdt.doc.isv/reference/api/org/eclipse/jdt/core/dom/ASTNode.html
http://help.eclipse.org/luna/index.jsp?topic=/org.eclipse.jdt.doc.isv/reference/api/org/eclipse/jdt/core/dom/ASTNode.html
http://help.eclipse.org/luna/index.jsp?topic=/org.eclipse.jdt.doc.isv/reference/api/org/eclipse/jdt/core/dom/ASTNode.html
http://help.eclipse.org/luna/index.jsp?topic=/org.eclipse.jdt.doc.isv/reference/api/org/eclipse/jdt/core/dom/ASTNode.html

4.3. CODE CHANGE ANALYSIS 43

Object contents
Variable Type Description
RefactoringDescription RefactoringDescriptor3 Describes which refactor-

ing took place.
ChangedElement ChangedElement Describes the most impor-

tant changed element.
id int Unique numeral identifier

for the ChangedElement.
ChangedElementName String Name of the new location

element.
ChangedElementLocation ASTNode4 Code location of the

changed element.
ChangedElementType int Type of the new location el-

ement.
ChangedElementProperty StructuralProperty-

Descriptor5
The changed property of
the new location element.

ChangedElement-
NewValue

Object Current value of the new lo-
cation element.

ChangedElement-
NewValueType

int Value type of the new loca-
tion element.

ChangedElement-
Operation

ChangeEnum6 Change on the new loca-
tion element.

ChangedElement-
OriginalValue

Object Old value of the new loca-
tion element.

ChangedElement-
OriginalValueType

int Original value type of the
new location element.

OriginalChangedElements List<Changed-Element> List of changed elements as
a result of the most impor-
tant change.

Same attributes as ’ChangedElement’
Additional-
ChangedElements

List<Changed-Element> List of changed elements
unrelated to the most im-
portant change.

Same attributes as ’ChangedElement’

Table 4.6: A description of the Changes object contents

44 4. RESULTS ON TESTS

For all original and additional changed elements we use:

• [ChangedElementProperty] property of [ChangedElementType], [ChangedElement-
Name], in [ChangedElementLocation] changed. New value: [ChangedElementNew-
Value] of type [ChangedElementNewValueType], [ChangedElementOperation] at old
value [ChangedElementOriginalValue] of type [ChangedElementOriginalValueType].

If a certain attribute is empty, it will be obviously left out of the description.

4.4. IMPACT ON TESTS

4.4.1. FILTERING CHANGES
In the previous section we defined the change on a code element as an object called ’ChangedEle-
ment’. It is important to note that not all changes necessarily impact the tests. We can de-
termine which changes are invaluable based on the changed element type and changed
property. Due to the use of black-box unit tests, we can ignore changes that do not alter the
interface. For instance, changes on a method’s body do not change the interface.

Before we can create a list of valuable changes, we require additional checks. For in-
stance, changes on a class’ body can be of value, but depend on the changed element’s new
value type. For example, an inserted method does change the interface, whereas a removed
variable declaration does not. Additionally, we require a check to determine whether it con-
cerns a private method.

Changing a method’s parameters may concern many changes: insertion or removal of
parameters, but also renaming a parameter. The latter refactoring does not alter the inter-
face and thus does not impact the tests.

Table 4.7 consists all changes which in general impact tests. Fields marked with a ’[!]’
sign require an additional access control (visibility) check. The ’Modifier’ property requires
this additional check to determine if the access modifier changed the interface. For exam-
ple, a change from ’private’ to ’protected’, does not change the interface.

4.4.2. IMPACT DETERMINATION
Before we present the standard rules to describe the impact, there are some concerns to
address:

First, why is there still need for impact determination (and advice), as the Eclipse IDE
automatically resolves broken code (including test code) as a result of a refactoring? The
Eclipse IDE has a lot of built-in tools that automatically fixes code for you. For example, in
case of a ’Move Method’ refactoring, it tries to resolve all references to the moved method
automatically. Although the test code is not incomplete, this specific situation still impacts
the tests: the corresponding test method is located in the wrong test class. A similar sit-
uation occurs when performing the rename method refactoring. The IDE will resolve all
references to the renamed method, but the corresponding test method may still use the old
naming convention. These examples indicate that, even if a refactoring does not directly
affect tests, tests can still be ’incorrect’.

Secondly, additional checks are a necessity. When an AST-Rewrite contains a change
of the ’inserted’ type, the impact may be to update the tests as well. If a new method is in-
serted, the impact would be a new and untested method. However, even if we only focus on
inserted method declarations there remains a problem: in case of a private method, there

4.4. IMPACT ON TESTS 45

Changes Impacting Tests
Changed Element Property New Value Type
Compilation Unit

Name -
Type Declaration

Name -
Modifiers Modifier [!]
Types -
Package -
Body Declaration Method Declaration [!]

Method Declaration
Name -
Modifiers Modifier [!]
Return Type -
Parameters Single Variable Declaration

Table 4.7: A list of changes that impact tests.

is no need for a corresponding test method, as a private method is normally not directly
accessible by test classes. Additionally, the kind of operation also needs to be taken into
consideration. Due to AST-Rewrite linking we could find out a change is is part of a ’move’
refactoring. This means that instead of the original ’inserted’ operation, we now know this
change is due to a move. For example, when a method is moved, there is no need for a new
test method, as the old test method can be moved as well. This changes the impact from
’untested method’ to ’method in wrong test class’.

IMPACT OF CHANGES

In Table 4.8 we added the impact on the tests for each change of Table 4.7. In some cases,
the impact on tests is dependent on additional attributes. For instance, in case of a changed
method in a class’ body. Aside from the access modifier, we have to check the operation as
well.

The additional rules for the access modifier are straightforward. Note that an element’s
access modifier can be empty in case of ’package private’ visibility, or due to being previ-
ously nonexistent.

• Original value: ’private’
If new value is ’protected’; no necessary changes.
If new value is ’public’; a new test method/class is required.
If new value is ’(empty)’; no necessary changes.

• Original value: ’protected’
If new value is ’private’; no necessary changes.
If new value is ’public’; a new test method/class is required.
If new value is ’(empty)’; no necessary changes.

• Original value: ’public’
If new value is ’private’; the test method/class is no longer required.

46 4. RESULTS ON TESTS

Changes Impacting Tests
Changed Element / Property New Value Type Impact on tests
Compilation Unit
Name - Incorrect test package

name.
Type Declaration
Name - Incorrect test class name.
Modifiers Modifier Dependent on original

and new (access) modifier:
untested class / unused
test class.

Types Type Declaration Untested class.
Package - Test class in incorrect test

package.
Body Declaration Method Declaration Dependent on the access

modifier and operation:
untested method / unused
test method / test method
in wrong test class.

Method Declaration
Name - Incorrect test method

name.
Modifiers - Dependent on original

and new (access) modifier:
untested method / unused
test method.

Return Type - Incorrect return type for as-
sertion in test method.

Parameters Single Variable Declaration Incorrect method parame-
ters in test method.

Table 4.8: A list the impact of changes on tests.

4.4. IMPACT ON TESTS 47

If new value is ’protected’; the test method/class is no longer required.
If new value is ’(empty)’; the test method/class is no longer required.

• Original value: ’(empty)’
If new value is ’private’; no necessary changes.
If new value is ’protected’; no necessary changes.
If new value is ’public’; a new test method/class is required.

The rules for the operation are similar:

• Operation: ’inserted’: a new test method/class is required.

• Operation: ’removed’: the test method/class is not longer required.

• Operation: ’moved’: the test method/class is located in the incorrect class/package.

• Operation: ’replaced’: a new test method/class is required.

• Operation: ’extract’: a new test method/class is required.

• Operation: ’inline’: the test method/class is not longer required.

The access modifier rules outweigh the operation rules. This means that the insertion of
a private method results in ’no necessary changes’ instead of ’ a new test method/class is
required’.

IMPACT TYPES

Based on the data of Table 4.8, we can identify a set of similar impact situations. There are
multiple changes that have a similar effect on the tests, we combine these changes as a set
and call them ’impact types’. The impact type is a description of impact of the changes on
tests. The impact description can be constructed by using the rules of the previous sec-
tion and inserting the ’ChangedElementType’ and ’ChangedElementLocation’ to provide
the description with the correct type and location. Below, the current list of impact types:

• Incorrect name: A test [ChangedElementType] (read: method/class/package) has an
incorrect name.

• Incorrect location: A test [ChangedElementType] (method/class) is located in the in-
correct test [ChangedElementLocation] (class/package).

• Incorrect coverage: A [ChangedElementType] (method/class) has no corresponding
test [ChangedElementType] (method/class).

• Incorrect coverage: A test [ChangedElementType] (method/class) is unused (has no
existing counterpart).

• Incorrect assertion: assertion uses incorrect [ChangedElementNewValueType] (pa-
rameters or return type).

As it is possible to have multiple changes that impact the test, we create an object
called ’impact data’. The impact data is essentially a list of impact types and corresponding
change data, which should provide sufficient information to base an advice on.

48 4. RESULTS ON TESTS

4.5. CONCLUSION
In this chapter we have presented the advice process as four distinct sub processes. In
order to leave the analysis of the test structure as future research, we provided a set of test
structure assumptions.

For the process we have two data sources to work with; AST-Rewrites and the refactor-
ing data. The main challenge with refactoring data is that it is a mere description, which
means that we cannot acquire actual changed objects. The AST-Rewrites are challenging
to work with, because processing them individual would occasionally result in incorrect
advice. Therefore we presented basic rules to determine the correct changes on the code
as a result of a refactoring. These rules focus on the search for ’links’, which are match-
ing values between rewrites. Additionally, we provided a ’Changes’ object to specify which
information we require to preform the impact determination.

For the test impact determination we concluded that only a select set of rewrite at-
tribute combinations could affect the black-box unit test. Several of these combinations
are dependent on the changed values, for which we provided an additional set of rules.
Due to this limited set of situations, we could create a list of five different impact types,
which should cover all possible changes.

We can now complement our research questions:
RQ1: Which different output combinations can the plug-in return?
In previous chapters we pointed at the challenge to work with large amounts of possible

different AST-Rewrites. Based on examining links between rewrites, we showed that only in
case of an extract, inline or move operation the combination of AST-Rewrites can provide
additional information. Other rewrites can be processed individually by using their regular
operation type. This reduces the important output combinations; extract, inline, move or
no combination (individual assessment).

For the individual rewrites, we can further reduce the amount of important rewrites if
we only focus on rewrites that impact the tests. Only a certain amount of attribute combi-
nations have a chance of affecting the tests.

RQ2: Can the original refactoring be requested from a set of AST-Rewrites, and if not,
can AST-Rewrites be recombined to reveal the initial refactoring?

With the use of a refactoring listener, we can catch a description of the performed refac-
toring. Additionally we presented the basics of an approach to reverse engineer the original
refactoring from the AST-Rewrites. Thus, both approaches are a possibility, but both intro-
duce additional challenges.

5
CREATING ADVICE

With the impact of a refactoring on the tests determined, the next step is to determine
and create the advice. In this chapter we describe how we can create advice based on the
previous determined impact types. We describe two advice types, distinguishable by the
amount of detail.

5.1. GLOBAL ADVICE
The amount of data required to determine the impact on the tests is already of significant
size. Examples in previous sections show that certain data combinations of an AST-Rewrite
result in the same global impact, but slight differences can cause a huge change in impact.

Previous research resulted in the ’Retestoring’ plug-in. As mentioned before, this plug-
in is capable of tracking AST-Rewrites, but does not give advice. However, this research
provides a first draft for creating advice. The approach lists several of data combinations
that result in the same global advice. For example: "(TypeDeclaration, bodyDeclarations,
Inserted, MethodDeclaration)" would result in an advice similar to "add a new test method
or add new assertions to an existing test method." [Passier et al., 2016]. In the previous sec-
tion we pointed out that listing all these combinations is inefficient and would not provide
us with a correct (fitting) ’result’ for each and every situation.

Instead, we focus on the impact types listed in the previous subsection. This list com-
bines changes with a similar outcome, which is also useful for the advice. We can extend
these impact types with a generic advice, which can be filled with the available change data
similar to how the impact type description is constructed. For example: the impact type ’in-
correct name’ would result in an advice similar to: ’Update name of test [ChangedElement-
Type] for [ChangedElementType] [ChangedElementName] in [ChangedElementLocation].’
Some changes provide additional data, for instance, a ’move’ provides the new values as
well as the original. Note: ’Original:’ means this concerns the first element in the ’Origi-
nalChangedElements’ list.

Additionally, several parameters are dependent on the specific code situation, hence
the ’/’ between the possible input attributes. The For instance, in case of a remove rewrite,
we would be interested in the ’original value’, whereas in case of an insert rewrite, the ’new
value’ is important. The ’Changed Element Property’ is the important attribute in rewrites
where, for example, the access modifier has been changed. This means the same rules
can still be applied for each situation, but require preliminary checks to select the correct

49

50 5. CREATING ADVICE

parameter values.

• Incorrect name: Update name of test [ChangedElementType] for [ChangedElement-
Type] [ChangedElementName] in [ChangedElementLocation].

• Incorrect location: Move test [ChangedElementType/ChangedElementNewValueType-
/ChangedElementOriginalValueType] for [ChangedElementType/ChangedElement-
NewValueType/ChangedElementOriginalValueType] [ChangedElementName/ChangedEle-
mentNewValue/ChangedElementOriginalValue] from [Original:ChangedElementLocation]
to [ChangedElementLocation].

• Incorrect coverage (no test): Create a test [ChangedElementType/ChangedElement-
NewValueType/ChangedElementOriginalValueType] for [ChangedElementType/ChangedEle-
mentNewValueType/ChangedElementOriginalValueType] [ChangedElementName/ChangedEle-
mentNewValue/ChangedElementOriginalValue] in [ChangedElementLocation].

• Incorrect coverage (no original): Remove the test [ChangedElementType/ChangedEle-
mentNewValueType/ChangedElementOriginalValueType] for [ChangedElementType-
/ChangedElementNewValueType/ChangedElementOriginalValueType] [ChangedEle-
mentName/ChangedElementNewValue/ChangedElementOriginalValue]] in [ChangedEle-
mentLocation].

• Incorrect assertion: Update the [ChangedElementProperty] for the assertion used in
the test for [ChangedElementType] [ChangedElementName] in [ChangedElement-
Location].

This provides us with a global advice on which actions to take in order keep the tests
up-to-date.

5.2. DETAILED ADVICE
Global advice is the first step to making it easier to maintain test. The ’change data’ and
’impact type’ provide us with more than sufficient information to give the advice some
extra detail. For example, in case of an ’Extract Method’ refactoring, we could also provide
additional advice based on the origin of the new method’s body. For the completion of the
new test method, we could add the following line to the global advice: ’... , use knowledge
from the test of [original:ChangedElementName]’. For the leftover of the original method
we could advice: ’Revise test method for method [original:ChangedElementName] in the
corresponding test class ’[original:ChangedElementLocation]’, focus less on functionality
of [ChangedElementName].

In a previous section, we briefly mentioned an approach where, subsequent to a refac-
toring, the same refactoring can be applied on the corresponding tests. Due to the use of
black-box tests, such approach cannot be used. The detailed advice presented above suf-
fers from the same problem. The contents of black-box test methods do not match the
corresponding regular methods, therefore, the extra detail has no real value.

In general, detailed advice could only be applicable in case of white-box tests, as white-
box tests are based on the knowledge of the internal structure of methods. Because we
use black-box tests, we list detailed advice under future work. For the current research the
global advice is sufficient.

5.3. ADVICE OBJECT 51

5.3. ADVICE OBJECT
In order to have different presentations of the advice, we have to create an object for the
advice as well. Depending on the presentation style or language, the order of the values
can change and some values have to be translated. Parts that are language dependent are
indicated between the ’<’ and ’>’ signs.

• Situation: [Impact type]

• Advice: [Advice type] (Containing: the change (<Update>/<Create>/<Move>/<Remove>)
and the element (<test> [ChangedElementType/ChangedElementNewValueType/ChangedEle-
mentOriginalValueType] / <the assertion used in the test>))

• Element Type: [ChangedElementType]

• Element Name: [ChangedElementName]

• Location: [ChangedElementLocation] and [Original:ChangedElementLocation].

5.4. CONCLUSION
We concluded that we could not use detailed advice because it would not provide ad-
ditional value in contrast to the global advice. Therefore we use the global advice cre-
ation rules based on previous determined impact types. This approach requires additional
checks to determine which attribute values we require as parameter, which is not ideal.
However, in this way, the advice creation rules can be kept to a select set.

Based on our advice creation rules, we can now answer our fourth research question:
RQ4: Can the refactored code itself contribute to the advice?
The refactored code itself is used in several advice cases. The code is included in several

of the AST-Rewrite attributes, which are also included in the ’Changes’ object. For example,
in case of an inserted method rewrite, the ’ChangedElementNewValue’ attribute contains
the entire method declaration code.

Currently, we only extract the name of code elements from these values, but if we would
implement the linking of AST-Rewrite, the values would be indispensable. Thus, the refac-
tored code itself certainly has value for the advice determination and creation.

6
PRESENTATION OF ADVICE

The created advice has to be presented to the user at some point. This chapter describes
possible ways of presenting the determined advice. We take a look at possible advice pre-
sentation standards and styles.

6.1. ADVICE AS A REFACTORING
Ideally we would like to advice a ’fixture’ refactoring for the tests as a result of a refactoring.
This refactoring could be automated and the issues with the corresponding tests would be
solved in no-time. Theoretically, advising refactoring should be possible. If we, for example,
extract code from method A to method B with an ’Extract Method’ refactoring, we could
assume that we could also extract the corresponding test code from test method A to test
method B with an ’Extract Method’ refactoring.

Finding the corresponding test code would already be quite the challenge. However, we
discussed the main issue before: the JUnit tests are black-box tests. This approach could
only work if tests have similar code as its corresponding methods, which is not the case. A
test consists of an initialization, providing input, receive the output and the final assertion
of the received and expected value.

Therefore it does not make sense to present advice as a refactoring in all cases. You
could perform the refactoring for the overall ’meaning’ of the code but it is not literally
applicable for the code itself. However, we notice that in case of an ’Incorrect name’ or
’Incorrect location’, the resulting advice is similar to the initial ’move’ and ’rename’ refac-
torings. Because this reasoning does not apply to the majority of the advice cases, we do
not elaborate this in more detail.

6.1.1. ADVICE IN AST-REWRITES
An interesting point could be to reconvert advice into a set of resulting AST-Rewrites. Ev-
ery change to the code can be presented as an AST-Rewrite, thus this should apply for the
advice as well. The advantage is the possibility to automate the advice by performing the
advised AST-Rewrites. The downside is that AST-Rewrites are not meant to be presented to
users and therefore lack readability. Additionally, it is a separate challenge to determine the
content of new test elements when inserted.

For current research, AST-Rewrites are not a fitting standard either. However, for future
work, the automation aspects could be useful.

52

6.2. TEXTUAL ADVICE 53

6.2. TEXTUAL ADVICE
Textual advice is a string representation of the advice created in the ’Advice module’. The
textual advice depends on two ’parameters’: presentation style and language.

• Language
Language of keywords and advice constructs.

• Presentation style
Way of presenting the advice; full sentences, keywords, etcetera.

For this research, we will provide a description of one presentation style and one lan-
guage.

6.2.1. LANGUAGE
The language of the advice specified by the language dictionary, which contains a list of
keywords/sentences and the corresponding translation. We decided not to translate pro-
gramming keywords, and to keep the keyword name identical to the definition in program-
ming language. To accomplish this, we use a ’Resource Bundle1’. This bundle contains
locale-specific (language) objects. In our case, we require string resources. For demonstra-
tion purposes we only implement one single language. Fortunately, the ’Resource Bundle’
is designed to be extended with resources and/or additional languages support.

The following keywords and phrases are language dependent:

Keywords: Update, Create, Move, Remove, Assertion, Coverage, Location, Test.
Phrases and non-keywords: Name, Incorrect, For, From, To, In, Name of, For the assertion

used in.

6.2.2. PRESENTATION STYLE
The most straightforward approach is to present the advice as is; a simple string represen-
tation of the advice object. We present an example form which can be applied as a simple
presentation style:

• Standard form:
[Advice type] <for> [ChangedElementType] [ChangedElementName] <in> [ChangedEle-
mentLocation].

• In case of a move (if [Original:ChangedElementLocation] is not empty):
[Advice type] <for> [ChangedElementType] [ChangedElementName] <from> [Origi-
nal:ChangedElementLocation] <to> [ChangedElementLocation].

Another example style, would be to provide the user with additional information on the
situation, by presenting the impact type or a description of the change.

6.3. CONCLUSION
Presenting advice as a refactoring is not always possible due to the use of black-box tests.
An AST-Rewrite is not applicable as an advice standard, because of the lack of readability.

1http://docs.oracle.com/javase/6/docs/api/java/util/ResourceBundle.html

http://docs.oracle.com/javase/6/docs/api/java/util/ResourceBundle.html

54 6. PRESENTATION OF ADVICE

Therefore we provided a straightforward textual standard presentation approach, as well as
some corresponding styles as an example, which should be sufficient for a proof of concept.

With these insights we can now complement our research questions:
RQ3: Is it possible to group AST-rewrites into a larger standardized advised change,

and if so, which standards are applicable to present the advice in?
We have concluded that advising a larger standardized change, for example a refac-

toring, is not applicable in most cases due to the use of black-box tests. Currently, only
a few pieces of advice have similarities with available refactorings. Therefore, we decided
that global advice is sufficient. In the future, advice could be converted into AST-Rewrites,
which should be applicable for all advice situations. However, AST-Rewrites are not read-
able and therefore would require a separate standard for the presentation purposes.

RQ5: Is it possible to automate the advised changes with available refactorings in the
Eclipse IDE or JDT?

In RQ3 we discusses that it should be possible in certain cases to advice a refactoring.
Because advising a refactoring is currently not applicable in all cases, we see no value in
further researching ’advice refactorings’. Therefore we will add this research question to
future work.

7
PLUG-IN

In the context of this research we mentioned the ’Retestoring’ plug-in, to track the modifi-
cations as a result of a refactoring. Throughout this research, we described its output and
how we intend to effectively use this data.

The initial goal is to create our own plug-in as an addition to the whole process (from
refactoring to advice). As a second step, we intend to complement the Retestoring plug-in
with the additional functionality.

7.1. STUDY

7.1.1. CUSTOM PLUG-IN
The ’Custom plug-in’ is our own approach to obtain ’global’ refactoring information from
the Eclipse IDE after a refactoring. We intended to keep this plug-in simple, as its goal is
to provide a proof of concept that it is possible to track the refactoring data available in
Eclipse.

Our Java plug-in consists of two parts: an activator and a handler. The activator1 con-
trols the life-cycle of the plug-in; it can be used to define start-up and shutdown functions.
Other functions are defined in the handler. The handler defines the actions that need to be
performed when certain menu commands are executed.

In our case, we have one single action; track refactoring events. This action starts a
refactoring listener, which is triggered by the execution of a refactoring event. When the
refactoring is ’done’ (all properties set and fully executed), we retrieve a description of the
refactoring from the event. This ’RefactoringDescriptor’ is what we call the ’refactoring
data’.

7.1.2. EXISTING RETESTORING PLUG-IN
The Retestoring plug-in is more sophisticated than our custom plug-in. Aside from the
detailed user interface, its tracking functions are complex due to the additional required
techniques. For example, AspectJ and Equinox/Weaving are a necessity in order to trace
AST-Rewrites within the plug-in [Passier et al., 2016].

The plug-in uses an aspect (AspectJ) to record changes to the AST as a result of a refac-

1http://help.eclipse.org/luna/index.jsp?topic=/org.eclipse.pde.doc.user/guide/tools/
project_wizards/plugin_content.htm

55

http://help.eclipse.org/luna/index.jsp?topic=/org.eclipse.pde.doc.user/guide/tools/project_wizards/plugin_content.htm
http://help.eclipse.org/luna/index.jsp?topic=/org.eclipse.pde.doc.user/guide/tools/project_wizards/plugin_content.htm

56 7. PLUG-IN

Figure 7.1: Advice Addition UML Use-case diagram

Figure 7.2: Pipe Filter Advice Architecture

toring. This technique makes it possible to inject behavior into another plug-in. This al-
lows the plug-in to intercept the refactoring control flow in the JDT, and thus obtain the
AST-Rewrites. The rewrites are then stored and processed separately.

The Retestoring plug-in uses an extension point2 to provide others with AST informa-
tion. The extension point provides modularity; it allows the plug-in to be extended by an-
other plug-in. In this case, the plug-in sends AST-Rewrite information to subscribers of the
’NewRewrite’ extension point. As a refactoring may consist of several rewrites, and each
rewrite is processed separately, the result is not a single ’NewRewrite’ event, but a series of
new rewrites.

7.1.3. THE ADVICE ADDITION
Our addition to the current situation, is to create and present advice based on the data of
both previous mentioned plug-ins. The main goal is to provide a user with advice. Addi-
tionally, we could provide information on the change as well. The commonality between
both tasks, is that they require refactoring information. Currently, refactoring information
is tracked by both plug-ins; respectively to gather the AST-Rewrite data and refactoring
data. This situation is summarized in the UML use-case diagram in Figure 7.1.

The advice addition includes all modules required to create and present advice based
on the plug-in input data. Each module has a separate task, with a predefined interface
and specified output. The output is actually the interface of the next module in the process
chain. Thus, in order to present the advice, data has to flow through all modules in the
correct order. As the input data essentially is based on a continues stream of refactorings,
we conclude that the situation is very similar to the pipe/filter architecture.

The plug-in input data can be seen as the ’pump’. The data flow between the modules
are the ’pipe’. The modules themselves are essentially a ’filter’. The data output at the end
of the module chain is the so called ’sink’, which, in this case, is equal to the presentable
advice. This architecture is visualized in figure 7.2.

Although all modules can perform their task independently, modules have a specific

2https://wiki.eclipse.org/FAQ_What_are_extensions_and_extension_points%3F

https://wiki.eclipse.org/FAQ_What_are_extensions_and_extension_points%3F

7.2. ADVICE CREATION PLUG-IN EXTENSION 57

executing order. Aside from filtering data, modules also add information and convert data
to make it suitable for the next module. This behavior may not be ideal for a filter, as it
becomes difficult to separate the global task into threads. However, parallelization is not
an obligation. Additionally, we cannot predict if threading is a necessity at all, aside from
an additional thread to preserve the user interface functionality.

7.2. ADVICE CREATION PLUG-IN EXTENSION
We have created a proof of concept plug-in extension for the Retestoring plug-in. We use
the aforementioned pipe-filter design as a basis for the internal architecture. Due to the
fact that all modules have different input and output, we use a filter with generic input and
output. The pipe contains a list of AST-Rewrites with a description of the refactoring. The
sink eventually receives a list of presentable textual advice.

The plug-in starts when the ’NewRewrite’ extension listener receives AST-Rewrite data
from the Retestoring plug-in. As a refactoring may be split in multiple separate ’NewRewrite’
events, we added a button to start the advice creation process manually. When the advice
creation is started, the refactoring data flows through each filter and eventually result in the
presentation of the pieces of advice to the user. If a refactoring requires no changes, there
will not be any advice.

For this proof of concept version we have not fully implemented every filter. We have
implemented the filters to such an extent, that we can receive raw advice for predeter-
mined refactorings. We left the ’Change Determination Module’ and ’Presentation Mod-
ule’ unimplemented, due to not having additional value for this concept. As converting
the refactoring data to the defined ’Changes’ object is a task on itself, we implemented the
’Change Analysis’ module to fill the ’Changes’ object without rules. Therefore, we only sup-
port refactorings for which the individual rewrite advice applies. For instance, according to
our test impact rules, in case of a simple ’extract method’ refactoring, the insertion of the
new method is the only rewrite that affects the tests state. Because we currently only create
global advice, the individual rewrite assessment results in the same advice. As an example,
we implemented the rules to recognize a ’move’ refactoring. Because, in case of a ’Move
Method’ refactoring the individual rewrite result would be incorrect. Similarly, we imple-
mented rules for refactorings that changes the access type.

7.2.1. VERSIONS
Current results may deviate from future results due to the different software versions. The
advice addition plug-in project is created in Eclipse Neon version 4.6.2. It is an extension to
the Retestoring plug-in version 1.0.0. We worked with the Java Development Tools version
3.12.2, Asptect-J version 2.2.4, and lastly, Weaving version 2.2.4. In order to obtain similar
results, use these particular software versions.

7.3. VALIDATION
In order to determine the usefulness of the advice addition plug-in, we test it with an exam-
ple refactoring situation. Additionally, we also provide the manual advice creation result in
order to validate the output.

58 7. PLUG-IN

7.3.1. TEST CASE
In this first example, we created a ’Calculator’ class and a ’Figure’ class. The ’Figure’
class uses several calculations of the ’Calculator’ class. The method ’multiply’ is too
simple, so we decide to inline its functionality. In Table 7.1 we show the initial code and re-
sulting code of this refactoring example. To validate the output, we will manually determine
the advice based on all available refactoring information. The ’Inline Method’ refactoring
results in the following list of AST-Rewrites, see Table 7.2. Note that, due to space con-
straints, certain body and parameter values are presented as three dots. Table 7.3 shows
the corresponding refactoring data.

MANUAL ADVICE DETERMINATION

For the manual approach, we loosely follow the steps described in the ’Results on Tests’
and ’Creating Advice’ chapters.

The refactoring data provides us the element of interests, and the name of the refactor-
ing. The most important rewrite is the removal of the ’multiply’ method in the ’Calculator’
class (rewrite #9). Because we know the initial refactoring, it becomes easier to find the fit-
ting linked rewrites, which in this case are rewrite #2, #6, #7 and #8. Thus, the ’Changed
Element’ is the data of rewrite #9. Rewrite #2, #6, #7 and #8 are the ’Original Changed Ele-
ments’, and rewrite #1, #3, #4 and #5 are the ’Additional Changed Elements’.

The next step is to determine which rewrites could impact tests, starting with the changed
element (Rewrite #9). This element impacts the tests, because it removes a public method
from a class. The ’Impact Type’ for this element therefore is ’Incorrect coverage’ (unused
test). Next up, are the original changed element. None of these elements have an impact
on tests, because they all concern the body of a method. The same goes for the additional
changed elements. This leaves us with one changed element to determine an advice for.

The last step is to determine the advice. Based on the impact type, we can use an advice
template to create the advice. This results in the following piece of advice: ’Remove the test
method for method multiply in Calculator.’.

ADVICE PLUG-IN OUTPUT

The plug-in outputs the following line of advice: ’Remove the test method for method public
int multiply(int first,int second) in public class Calculator.’. This advice is almost identical
to the manual advice determination as intended.

7.3.2. ADDITIONAL TEST CASES
For the additional test cases, we use the example refactorings of Chapter 3. Instead of a
comprehensive stepwise explanation on how to determine the advice in each situation, we
provide our predetermined advice right away and check corresponding the plug-in’s output
advice. These test cases are shown in Table 7.4.

In general, the advice seems to match the expectation. There are, however, some note-
worthy cases, which we discuss below:

• Test case #1 has no advice because the extraction introduces a private method.

• The reason why test #7 fails is due to the particular AST-Rewrite output of the refac-
toring. For example, one would expect a new class rewrite, but instead receive a
rewrite of the class filling its own body. Additionally, several rewrites are duplicated

7.3. VALIDATION 59

Inline method result
Original code Refactored code

public class Calculator {

public int multiply (int first ,
int second){

return first * second ;
}

public int square (int number){
return

multiply (number , number);
}

public int cube(int number){
int side =

multiply (number , number);
return multiply (number ,

side);
}

}

public class Figures {

Calculator calc;
public Figures (){

calc = new Calculator ();
}

public int
calculateCubeVolume (int
length){

return calc.cube(length);
}

public int
calculateCubeArea (int
length){

int side =
calc. square (length);

return calc. multiply (6,
side);

}
}

public class Calculator {

public int square (int number){
return number * number ;

}

public int cube(int number){
int side = number * number ;
return number * side;

}
}

public class Figures {

Calculator calc;
public Figures (){

calc = new Calculator ();
}

public int
calculateCubeVolume (int
length){

return calc.cube(length);
}

public int
calculateCubeArea (int
length){

int side =
calc. square (length);

return 6 * side;
}

}

Table 7.1: Code before and after the ’Inline Method’ refactoring

60 7. PLUG-IN

Inline method AST-Rewrites
Changed

node
Property Change Original

value
New Value Placeholder

1 public
int
multi-
ply(...)
{...}

body Replaced
(place-
holder)

first 0 6

2 public
int cal-
culate-
CubeArea
(int
length){...}

body Replaced
(place-
holder)

return
calc.
multi-
ply(6,
side);

return; return 6
* side;

3 public
int
multi-
ply(...)
{...}

body Replaced
(place-
holder)

first MISSING number

4 public
int
multi-
ply(...)
{...}

body Replaced
(place-
holder)

first MISSING number

5 public
int
multi-
ply(...)
{...}

body Replaced
(place-
holder)

first MISSING number

6 public
int
cube(int
num-
ber){...}

body Replaced
(place-
holder)

multiply
(number,
number);

MISSING() number *
number

7 public
int
cube(int
num-
ber){...}

body Replaced
(place-
holder)

return
multi-
ply(number,
side);

return; return
number *
side;

8 public
int
square(int
num-
ber){...}

body Replaced
(place-
holder)

return
multi-
ply(number,
number);

return; return
number *
number;

9 public
class
Calcula-
tor{...}

body-
Declarations

Removed public
int mul-
tiply(int
first,
int sec-
ond){...}

Table 7.2: The AST-Rewrites of the ’Inline Method’ refactoring example

7.3. VALIDATION 61

Inline method refactoring data
Inline method ’Calculator.multiply()’ in ’Calculator’
Original project: ’MyProject’
Original element: ’Calculator.multiply()’
Remove method declaration
Replace all references to method with statements

Table 7.3: The data of an ’Inline Method’ refactoring

and also contain ’MISSING’ references. To support this refactoring, we would require
a specific method to correctly fill the ’changes’ object for this situation.

• For test #8 one would expect an advice to also create a test for the constructor of the
class. However, the AST-Rewrite output of this refactoring does not explicitly shows
the creation of methods for an extracted class. Therefore, we would also require a
special method to handle this refactoring situation.

7.3.3. CONCLUSION
We have created a proof of concept plug-in which is capable to determine the advice for
each AST-Rewrite individual. Because we only determine the global advice, this approach
already results in the correct advice determination for several refactoring situations. As an
example, we added support for the ’move’ refactoring, which always requires a link between
AST-Rewrites in order to determine the correct advice.

Based on the results of the test cases, we can conclude that we indeed determine the
correct advice for several refactoring situations. However, there are still unsupported refac-
torings, which lead to an incorrect result. An important reason for this problem, is the
fact that the implementation of refactorings in Eclipse are inconsistent. The approach for
determine the correct results is therefore slightly different for every situation. In most of
the cases, these refactorings could be supported by creating an approach for filling the
’Changes’ object in case of that particular refactoring.

62 7. PLUG-IN

Test cases
Case Expected output Plug-in output Match
1 Extract

Method,
Table 3.1

No advice ” Yes

2 Inline
Method,
Table 3.3

Remove the test method for
method multiply in Calcula-
tor.

’Remove the test method
for method public int mul-
tiply(int first,int second) in
public class Calculator.’

Yes

3 Move
Method,
Table 3.4

Move the test method for
method add from MyCalcu-
lator to MyNewCalc.

’Move test method for
method public static int
add(int x, int y) from public
class MyCalculator to public
class MyNewCalc.’

Yes

4 Move
Method
Alternative,
Table 3.5

Move the test method for
method add from MyCalcu-
lator to MyNewCalc.

’Move test method for
method public static int
multiply(int x, int y) from
public class MyCalculator to
public class MyNewCalc.’

Yes

5 Introduce
factory,
Table 3.6

Create a test method for
method createCar in public
class Car. Remove the test
method for method Car.

’Create a test method for
method public static Car cre-
ateCar() in public class Car.
Remove the test method for
method public Car().’

Yes

6 Introduce
parameter,
Table 3.7

Update the parameters for
the assertion used in the test
for method setName.

’Update the parameters for
the assertion used in the test
for method public void set-
Name().’

Yes

7 Extract su-
perclass,
Table 3.8

Create a test class for class
Fruit. Move the test method
for method eat from Apple to
Fruit. Create a test method
for method Fruit in Fruit.

’Create a test method for
method public Fruit() in
public class Fruit. Remove
the test method for method
public void eat() in public
class Apple extends Fruit.
Create a test method for
method public MISSING
eat() in public class Fruit.
Remove the test method for
method public void eat() in
public class Apple extends
Fruit. Create a test method
for method public MISSING
eat() in public class Fruit.’

No

8 Extract
class, Table
3.9

Create a test class for class
Wheel. Create a test for
method Wheel in Wheel.

’Create a test class for class
public class Wheel.’

No

Table 7.4: Test cases for the advice addition plug-in

8
RELATED WORK

Test maintainability is a common topic in TDD environments. We will address some im-
portant related work below, and describe how it relates to our research.

8.1. XUNIT TEST PATTERNS & TEST SMELLS
The ’xUnit Test Patterns’ book describes an approach to improve the structure of test code
in order to also improve maintainability. It introduces strategies and patterns that aid the
programmer to write tests that are better understandable, maintainable, and to reduce bad
smells in the test code [Meszaros, 2007].

Bad smells for test code specific are called ’Test smells’, and are used to identify test code
flaws [van Deursen et al., 2001]. An example of a test smell is the so called "copy, paste, mod-
ify" style of creating tests, which is a common practice [Li and Thompson, 2009]. This style
of creating tests uses a code copy of an existing test as a base for a new test, which obviously
introduces a certain amount of code duplication. Code duplication is therefore also a test
smell. The test smells come with corresponding test code refactorings to make test code
more understandable and maintainable [van Deursen et al., 2001]. As with ordinary code
smells, the search for test smells and its corresponding refactorings can also be automated
[Greiler et al., 2013].

Similarly to our own research, the aforementioned test maintenance approaches mostly
fall into the category of preventive maintenance. However, in contradiction to our research,
the focus lies on improving the structure of the test suite itself in order to achieve main-
tainability. Whereas our research focuses on maintaining the correctness of tests while
improving the structure of the source code. Additionally, our research differentiates from
aforementioned related work, because we solely focus on black-box tests. As a black-box
test does not take the implementation of the method under test into consideration, it is
difficult, or sometimes not even possible, to meaningfully apply (smell fixture) refactorings
on the test.

8.2. SOFTWARE EVOLUTION
The book ’Software Evolution’ devotes a chapter to describe that refactorings can indeed
invalidate tests [Moonen et al., 2008]. In this chapter, they divide refactorings [Fowler et al.,
1999] into categories based on how they change the interface. They list five refactoring

63

64 8. RELATED WORK

categories:

• Composite: large refactorings that consist of multiple smaller refactorings.

• Compatible: a refactoring that does not change the interface, for example, the ’Split
Temporary Variable’ refactoring.

• Backwards compatible: a refactoring that only adds to the interface, for example, an
’Extract Method’ refactoring.

• Make backwards compatible: a refactoring that changes the interface, but can be
made backwards compatible by using a wrapper to retain the old interface. For ex-
ample, the ’Move Method’ refactoring.

• Incompatible: a refactoring that changes the interface, and cannot be made back-
wards compatible. For example, the ’Inline Method’ refactoring.

For the compatible categories they provide examples which roughly describe a manual ap-
proach on how one could update the tests.

The approach in this book comes closest to our research, as it describes how a refactor-
ing on the source code can impact the tests. The refactoring categories are different from
our ’impact types’, because their categorization differentiates refactoring changes that can
and cannot be solved with a refactoring or pattern. The main reason is probably due to
their use of white box tests, which makes more refactorings applicable to have a possible
impact the tests.

Another important difference is the additional focus on validation of the behavior of
the source code while updating the tests after a refactoring [Moonen et al., 2008]. For ex-
ample, in case of a ’Move Method’ refactoring, their first focus lies on fixing the test with
a wrapper to check the refactoring. Moving the test method to another location comes af-
ter the validation. The authors even state that "we do not want to change the tests together
with a refactoring since that will make them less trustworthy for validating correct behavior
afterwards." [Moonen et al., 2008]. We agree that, if you want to maintain the behavior of
the source code after a refactoring, changing tests at the same time disrupts the validation
of the refactoring. However, our research is aimed at maintaining the correctness of tests.
Maintaining the correctness of the source code is a side aspect our research is not focused
on.

It is difficult to further compare this approach in more depth, as it only describes the
actual fixture part with a few examples and lacks concrete steps or rules on how to update
the tests.

8.3. CONCLUSION
There is sufficient research available on the subject of test maintainability. Most related
work focuses on the aspect of improving maintainability by improving the structure of the
tests. There is however, little related work based on the aspect that source code refactorings
can invalidate tests. We conclude that determining the effect of refactorings on tests is a
distinct and still relative unexamined aspect of test maintenance.

9
CONCLUSION

We have proven that it is indeed possible to create an universal approach for determin-
ing the advice on the test situation after a refactoring. Although we still require additional
checks or rules in order to be able to create the correct advice for every refactoring, we
already created the basics to support a handful of refactorings.

The reason why we cannot support all available refactorings immediately, is the fact
that the AST-Rewrite output depends on the refactoring implementation for a particular
version of the Eclipse IDE. Additionally, a single refactoring can have many variations de-
pendent on structure of the source code, which makes it even more complex. Refactor-
ings that result in a set of AST-Rewrites which can not be processed individually are most
difficult to support, as these require specific approaches for determining the correct re-
quired change on the test set. This is the main reason why we did not (fully) implement
the ’Change Analysis’ module, as creating a smart approach to tackle this challenge is a
separate task on its own.

We have divided the advice determination process into several parts: change analy-
sis, change determination, test impact determination, advice creation and finally advice
presentation. This provides a future steady structure, in which modules can be swapped
with newer versions when required. The partially implemented modules are therefore not
a problem.

In order to deal with the vast amount of different AST-Rewrites, we concluded that we
can decrease the amount of important rewrites by only focusing on rewrites that can actu-
ally have an impact on the tests. This resulted in a select group of AST-Rewrites. For these
particular rewrites, the impact of the rewrite on the test can be summarized by one of five
impact types. This makes the advice creation manageable, because we only have to provide
advice for five distinct (global) situations.

The following section contains the conclusion for each of our research questions. In the
remainder of this chapter we discuss our contribution to this research subject and evaluate
the outcome.

Figure 9.1: Pipe Filter Advice Architecture

65

66 9. CONCLUSION

9.1. CONCLUSION - RESEARCH QUESTIONS
RQ1: Which AST-Rewrite plug-in output includes a change that can impact tests?

The output of the Retestoring plug-in is a set of one or more AST-Rewrites, each con-
taining a combination of attributes. Theoretically, because of the large amount of possible
AST-Rewrites, we could have countless rewrite combinations.

Therefore, we conclude that we have to shift our focus to determine which combina-
tions are valuable. We experience that certain rewrites as a result of an extract, inline or
move refactoring only provide additional information when combined. Rewrites of other
combinations, that do not provide additional useful information when combined, can be
processed individually.

Due to the use of black-box unit tests, we conclude that only a select amount of rewrites
can actually have an impact on the tests. This further reduces the amount of important
rewrites. For a full list of rewrites that can impact black-box tests, see Table 4.7.
In more detail: the reason why providing a list of all possible output combinations is nearly
impossible, is because we have an impractical amount of combinations, even if we would
only focus on the AST-Rewrite output of the available refactorings in the Eclipse IDE. This
is mainly because each refactoring can be performed in multiple different situations. For
example, a ’move’ can be performed on one or more (static) methods, (static) fields, types,
compilation units, packages, source folders and projects1. Combined with the amount of
possible different existing code references to this moved code element, which have to be
changed subsequently, there are innumerable combinations.

As a result, we focus on more abstract combinations. These abstract combinations
describe correlated attribute combinations between AST-Rewrites. These combinations
ensure that we are able to recognize and distinguish additional operations (extract, inline
and move), from the regular individual operations (insert, replace, remove) in a set of AST-
Rewrites. The additional operations, in general, consist of multiple rewrites with certain
correlated attributes. These correlated attributes are what we call ’links’. With the use of
these links, we would be able to find correlated rewrites, which only provide additional
information when linked.

This rewrite linking approach provides a manageable set of attribute combinations rules
to check for, which are listed at the end of subsection 4.3.2. For the leftover (non-linked)
rewrites, we conclude that we do not need a special approach, as processing these individ-
ually leads to the correct result.

Because black-box tests do not take the implementation of the method into consider-
ation, we conclude that only a select set of rewrite attribute combinations could actually
impact the tests. In this case, only changes to the interface can impact the tests.

RQ2: Can the original refactoring be requested from a set of AST-Rewrites, and if not,
can AST-Rewrites be recombined to reveal the initial refactoring?

Yes, the original refactoring can be recombined from a set of AST-Rewrites, or requested
from the refactoring data.
In more detail: based on our description of the two sources of data to work with; the AST-
Rewrites and the refactoring data, we have shown that either of the data sources (or a com-
bination of both) could provide information on the original refactoring. Although, both
approaches each come with their own set of challenges; the refactoring data is a mere de-

1http://help.eclipse.org/luna/index.jsp?topic=/org.eclipse.jdt.doc.user/reference/
ref-menu-refactor.htm

http://help.eclipse.org/luna/index.jsp?topic=/org.eclipse.jdt.doc.user/reference/ref-menu-refactor.htm
http://help.eclipse.org/luna/index.jsp?topic=/org.eclipse.jdt.doc.user/reference/ref-menu-refactor.htm

9.2. CONTRIBUTIONS 67

scription and does not provide actual objects, whereas the AST-Rewrite output is some-
times inconsistent and related rewrites are difficult to link. See subsection 4.3.1 for more
information.

RQ3: Is it possible to summarize the result of the analysis of a refactoring as a larger
standardized advised change, and if so, which standards are applicable to present the
advice in?

Currently, there are no applicable standards to present the advice in.
In more detail: with the creation of the universal advice creation rules, we conclude that a
refactoring, is not applicable in most cases. This is due to the fact that the code of black-box
tests does not reflect the actual method’s code. Some advised changes can therefore not be
portrayed by a refactoring.

The reason we are mainly interested in refactorings as a standard, is because of the
possibility to automate the advice in the future. Another standard, for instance an AST-
Rewrite, can also be used to automate the advice, but is not suited for presentation, since it
lacks readability. See section 6.1 for more information.

On second thoughts, we ask ourselves, even if a refactoring is applicable as advice in
a certain situation, is it actually suitable as an advice standard? We essentially intend to
use the refactoring (advice) to fix something that is ’incorrect’, which is no longer related to
preventive maintenance.

RQ4: Is it necessary to collect the refactored code itself to contribute to the advice?
The refactored code itself is already part of the AST-Rewrite output. Several attributes

of an AST-Rewrite contain the concerning changed code elements. Therefore, these values
are used (multiple times) in the process of determining the advice. Thus, the refactored
code does not have to be separately collected, because it already contributes to the advice
as part of the AST-Rewrites.

RQ5: Is it possible to automate the advised changes with available refactorings in the
Eclipse IDE or JDT?

No, it is currently not possible to automate the advise, as the output of the advice ad-
dition plug-in is a ’String’ representation of advised changes. This output is solely for test
purposes and is not suited for automation.
In more detail: in RQ3, we conclude that a piece of advice can not always be covered by a
refactoring. Therefore we require a different solution for advice automation. This research
question will be listed as future work, but will focus on advice automation in general in-
stead of refactorings.

9.2. CONTRIBUTIONS
The result of the research is the advice addition plug-in and the corresponding new insights
in the general research subject, which we will discuss below.

9.2.1. SOFTWARE
The advice addition plug-in is an extension of the Retestoring plug-in, and is meant to be a
proof of concept to show how to give advice based on refactoring information. The current
version of the plug-in is capable of determining the advice for, among others, the ’Extract/-
Move/Inline Method’ refactorings, and the ’Change Method Signature’ set of refactorings.

The reason why we support a handful of refactorings, is because the majority of the cur-

68 9. CONCLUSION

rently supported refactorings are refactorings where individual rewrite processing yields
the correct global advice. Currently, the global advice is identical to the detailed advice.
This is because the additional details are not applicable for the black-box tests, and there-
fore not of any value for the advice. See chapter 5 for more details.

In order to support more refactorings we have to fully implement the ’Change Analysis’
module. Especially for refactorings that result in two or more AST-Rewrites that describe
the same exact part of the change. The ’Move Method’ refactoring is an example to this.

For this proof of concept, we implemented the rules to support the ’move’ refactoring
and several of the ’Change Method Signature’ refactorings, as an example to specifically
test refactorings that with individual rewrite assessment would lead to incorrect results.

9.2.2. INSIGHTS & DISCUSSION
Due to the large amount of possible AST-Rewrite attribute combinations, creating a rule
for every combination is not an option. We conclude that, in order to support all refactor-
ings, we require to link AST-Rewrites. These links are essentially specific values matches
between rewrites that help to determine if an certain change has been executed. This is a
necessity, because several larger changes, for example, a ’move’ refactoring, can not be por-
trayed as a single rewrite, but results in multiple rewrites. Linked rewrites provide required
information about the initial refactoring and refactoring parameters among others.

We provide an approach to extract the necessary information from the AST-Rewrites
and/or refactoring data to correctly determine the impact of a rewrite on the tests. The
code itself is also used in this process; namely as several of the AST-Rewrite attributes’
value. Nonetheless, the description and reasoning provide the basics and give insight on
the challenges to overcome in future work.

A noteworthy discovery, is the fact that the Eclipse implementation of refactorings is not
consistent. Aside from making the use of AST-Rewrites more complex, this aspect intro-
duces an uncertainty. It means that two similar refactorings can result in different rewrite
sets. In this process, we also found some bugs in the Retestoring plug-in.

The creation of the ’Changes’ object provides the desired standard (data object) to de-
termine the advice from. Although the plug-in is far from supporting every refactoring
situation, the ’Changes’ object provides a starting point for future additions.

Furthermore, we provide a set of rules in order to determine the impact of a change
on the tests, which is based on the ’Changes’ object. Due to the use of black-box tests, we
experienced that it is invaluable to determine the impact of changes to a method’s body
(amongst others), because a method’s body structure is nonidentical to its corresponding
test method’s body. This way, we conclude that only a select set of changes can impact tests.
With this insight, we defined a set of impact types (see subsection 4.4.2).

We shaped an additional set of rules to process an impact type into an actual advice. We
conclude that we cannot present the advice as a refactoring, and therefore instead provide
a simple example presentation style. We intentionally left the presentation module simple,
as the presentation layer does not provide additional value to this proof of concept.

ARCHITECTURE & IMPLEMENTATION

The decision to use the pipe-filter architecture for the internal design of the plug-in fits
the process well. Dividing the advice process into several filters works as intended, as each
filter performs a distinct task. A Filter can be replaced, as long as the replacement preserves
the same input and output objects. Since the process uses a predetermined and fixed filter

9.3. EVALUATION 69

execution order, which requires all filters, we decided that each filter has fixed input and
output objects.

We already expected that the creation of a universal rule set would be quite the chal-
lenge, but in particular, the amount of small checks to distinguish different situations from
each other make the code more complex. For example, in the ’Advice Creation’ processing
methods, we would require different variables for the actual advice creation, dependent
on the situation. For instance, in case of a remove rewrite, we would be interested in the
’original value’, but in case of a insert rewrite, we require the ’new value’. These preliminary
checks are deliberately not included in this research document, because these are imple-
mentation specific and do not contribute to the general design.

9.3. EVALUATION
All in all, we are satisfied with the results of our research. We reached our goal to further
develop the advice determination and advice creation process.

The creation of the basic rules, in order to create an advice based on raw refactoring
information, should provide ideas and starting points for future work. The test cases have
shown that the rule set is sufficient for at least a handful of refactorings. However, it also
shows that we still need to adapt and complement the rules to support more refactoring
situations. These rules and checks are a necessity due to the difference rewrite output for
each refactoring.

We did not implement the ’Change Analysis’ as most of the challenges it introduced are
out of scope for this research (see subsection 4.3.3). Due to not implementing this module,
we ended up with additional checks divided over the other modules in the advice creation
chain. We expect that most of these preliminary checks could be moved to the ’Change
Analysis’ without any issues. However, this would require fabricating a ’Changes’ object by
combining multiple rewrites. In this way, we can eliminate most of the checks in the impact
and advice modules. The leftover checks would then only focus on selecting the correct
values for the advice and impact creation. Note that this approach does not eliminate the
possible need for additional rules and checks in case of a different/unsupported refactor-
ing. This possibility of increasing the amount of required additional rules and checks is an
important future attention point.

The advice addition plug-in fulfills its role as proof of concept by showing it is indeed
possible to create advice based on a set of AST-Rewrites. Although we did not find an ap-
plicable standard to present the advice in, this does not affect the usefulness of the output.
Due to the use of the pipe-filter architecture, one only has to replace the presentation filter
to change the final output.

Regarding the presentation standard; finding a readable standard which can be auto-
mated as well is perhaps not possible. Because the presentation standard is not of added
value for this proof of concept, we have not further researched this aspect, and just pre-
sented the advice as is. However, for future advice automation goals, separating advice
automation from advice presentation, thus creating two distinct modules, is a possible so-
lution. In this way, we can use a standard for the presentation which focuses on readability,
while we use another standard to create automatable advice. We have listed this idea as
future work.

The outcome of this research takes us one step closer to reaching the ultimate goal:
automatically maintain test coverage after a refactoring by only using AST-Rewrites.

10
FUTURE WORK

Throughout this research, we hint to future work on multiple occasions. This chapter pro-
vides a complete list of future work.

10.1. TEST SUITE ANALYSIS
Currently, we use a list of test code status assumptions, containing, for example the as-
sumption: ’every public method has a corresponding test’. Therefore, we do not check the
actual test suite structure to see if a test method is present. The most straightforward ap-
proach, to obtain the status of the test structure itself, is to analyse the test structure and
to identify if the required tests methods and classes are present. The opposite is also of
importance; to check if code elements which do not need tests, are indeed not tested. We
listed several of these possible situations, see section 4.2.

In order for the test suite analysis to work, we require some kind of approach to find the
correct corresponding test method for a regular method. This could be simplified by using
custom annotations, or by simply letting the user select the correct class.

Additionally, this test analysis can be extended by also checking for faulty code struc-
tures. For example, by following the Java coding convention guidelines. On top of that,
checks could be added to test for available data which is not part of the interface.

10.2. ADVICE PRESENTATION
The current advice presentation consists of only an example implementation. Aside from
different languages, one could research the semantics of messages. For instance, study
how Eclipse itself determines/creates its messages for compiler, error or GUI messages.
The context of the advice message can possibly also contribute to the quality. If applicable,
one could use an advice standard, which solely focuses on presentation, and is not suitable
for future advice automation.

10.3. AUTOMATIC ADVICE EXECUTION
Ideally, the presented advice should be applicable with a single button press. We could
not find a standard which is suitable for both advice presentation as well as automation.
Therefore, creating a separate module for advice automation is a possible solution. In this
way, a standard can be used which does not require to be readable. An example solution

70

10.4. ADVICE INTERFACE 71

could be to convert pieces of advice back into AST-Rewrites, and perform the AST-Rewrites
on the tests. This does however requires a thoroughly analysis of the tests structure.

10.4. ADVICE INTERFACE
Currently, we use the ’Changes’ object as a starting point for the advice creation process. In
the future, it would be interesting to research if we could create an interface/object for the
whole process, which also functions as a required data standard for Eclipse refactorings.
In the long run, this interface could help to eliminate the inconsistencies between Eclipse
refactorings, and could reduce required additional checks in the advice creation process.

10.5. WHITE-BOX TESTS
In current research we only provide advice for black-box tests. In the future, we aim at
also supporting white-box tests. With the use of white-box tests, we can provide a more
detailed advice on how to update tests. Because white-box tests take the implementation
of a method into consideration, we would be able to use some advice we currently ignore
(for example, changes to a method’s body). We can also complement the advice by looking
at ’Test Smells’ and ’Path coverage’.

In order to achieve coverage, one could check if all execution paths are covered. The
same goes for test coverage, in which one checks if a set of tests cover all paths of its cor-
responding test method. As test path coverage increases the quality of the tests, it would
therefore make a good addition to the advice.

10.6. MINOR TASKS
A list of smaller tasks which still have to be done.

• Reconverting placeholders to AST-Nodes.
The AST-Rewrite placeholder value is currently a string representation. This makes
comparing the placeholder with other AST-Rewrite attributes more difficult. Inter-
preting the placeholder and converting it to an AST-Node would help to correctly
identify links that are not a (perfect) textual match.

• Fully implement the ’Change Analysis’ module.
Currently, the ’Change Analysis’ is only a partial implementation of the rules de-
scribed in subsection 4.3.2.

• Fully implement the ’Presentation’ module.
The ’Presentation’ module currently lacks the styles and language templates described
in chapter 6.

• Extract the custom plug-in functionally into a separate plug-in.
For test purposes this functionality is included in the advice plug-in, but actually the
functionality is separate from the advice plug-in.

• Create a reusable approach to gather the correct values for each impact/advice
rule.

72 10. FUTURE WORK

Each ’Changes’ object contains important values, but these values are located in dif-
ferent attributes, dependent on the type of change. Currently, we have an additional
check to determine the type of the change before we can select the required values.

BIBLIOGRAPHY

Beck, K. (2002). Test Driven Development By Example. Pearson Education.

Fowler, M., Beck, K., Brant, J., Opdyke, W., and Roberts, D. (1999). Refactoring: Improving
the Design of Existing Code. Addison-Wesley Longman Publishing co.

Greiler, M., van Deursen, A., and Storey, M.-A. (2013). Automated detection of test fixture
strategies and smells. In IEEE Sixth International Conference on Software Testing, Verifi-
cation and Validation (ICST), pages 322–331, Luxembourg City, Luxembourg.

Hafiz, M. and Overbey, J. (2015). Refactoring myths. IEEE Software, 32(6):39–44.

IEEE Standards Board (1999). IEEE standard for software unit testing: An American national
standard, ANSI/IEEE Std 1008-1987. In IEEE Standards: Software Engineering, volume
vol. 2: Process Standards. The Institute of Electrical and Electronics Engineers, Inc.

International Standards Organisation (ISO) (1999). Iso/iec 14764. In Standard for Software
Engineering – Software Maintenance. ISO/IEC.

Li, H. and Thompson, S. (2009). Testing-framework-aware refactoring. In the Third ACM
Workshop on Refactoring Tools, pages 182–196, Orlando, USA.

Mens, T. and Tourwé, T. (2004). A survey of software refactoring. IEEE Transactions on
Software Engineering, 30(2):126–139.

Meszaros, G. (2007). XUnit Test Patterns: Refactoring Test Code. Addison-Wesley.

Moonen, L., van Deursen, A., Zaidman, A., and Bruntink, M. (2008). On the interplay be-
tween software testing and evolution and its effect on program comprehension. In Soft-
ware Evolution, pages 173–202. Springer Berlin Heidelberg.

Oates, B. (2006). Researching Information Systems and Computing. Sage Publications Ltd.

Passier, H., Bijlsma, L., and Bockisch, C. (2016). Maintaining unit tests during refactoring.
In Proceedings of the 13th International Conference on Principles and Practices of Pro-
gramming on the Java Platform: Virtual Machines, Languages, and Tools (PPPJ), Lugano,
Switzerland.

Schäfer, M., Verbaere, M., Ekman, T., and de Moor, O. (2009). Stepping stones over the refac-
toring rubicon. In ECOOP 2009–Object-Oriented Programming, pages 369–393. Springer-
Verlag.

Tahchiev, P., Leme, F., Massol, V., and Gregory, G. (2010). JUnit in Action. Manning Publica-
tions.

73

74 BIBLIOGRAPHY

van Deursen, A. and Moonen, L. (2002). The video store revisited–thoughts on refactoring
and testing. In Proceedings of the 3rd International Conference on eXtreme Programming
and Flexible Processes in Software Engineering, pages 71–76, Alghero, Italy.

van Deursen, A., Moonen, L., van den Bergh, A., and Kok, G. (2001). Refactoring test code.
In Proceedings of the 2nd International Conference on Extreme Programming and Flexible
Processes in Software Engineering (XP2001), pages 92–95, Sardinia, Italy.

Zhang, M., Hall, T., and Baddoo, N. (2011). Code bad smells: a review of current knowledge.
Journal of Software Maintenance and Evolution: Research and Practice, 23(3):179–202.

ACRONYMS

AOP Aspect Oriented Programming.

AST Abstract Syntax Tree.

IDE Integrated Development Environment.

JDT Java Development Tools.

RQ Research Question.

TDD Test Driven Development.

UML Unified Modeling Language.

XP eXtreme Programming.

75

GLOSSARY

Abstract Syntax Tree (AST) is a tree representing the abstract syntactic structure of the
source code of a program.

Abstract Syntax Tree Node (AST-Node) is a node in the AST representing a certain block of
code structure in the source code.

Abstract Syntax Tree Rewrite (AST-Rewrite) or rewrite for short, is a change on the node
of an abstract syntax tree, and is a result of a structural change to the source code of
a program.

Bad smell or code smell, is a certain source code indication that indicates a possible de-
sign flaw or a structural problem.

Black box unit test is a test which does not take the internal structure of the unit under
test into account.

Impact type is, in this research context, a categorized set of changes on the source code
that have a similar effect on the tests.

JUnit is a unit testing framework for the Java programming language.

Link is, in this research context, a certain attribute value match between two AST-Rewrites.

Micro-Refactoring is a sub step of a refactoring.

Placeholder is, in the AST-Rewrite context, a ’String’ type value that holds data during a
move or replace.

Refactoring is the process of improving a program’s internal structure without changing
its external behavior.

Test is, in this research context, a unit that examines the behavior of another distinct unit.

Unit is the smallest testable part of an application. In this research context, a unit refers to
a single method in the Java programming language.

76

	Introduction
	Research Questions
	Research Approach
	Research Document Structure

	Refactoring and AST-Rewrites
	Refactoring Examples and Counterparts
	Micro-Refactorings
	Refactoring Limitations
	Refactoring Automation
	Abstract Syntax Tree & Rewrites
	A refactoring in AST-Rewrites

	JUnit
	Retestoring Plug-in
	Eclipse
	Summary

	AST-Rewrite Types
	AST-Rewrite Attributes
	Example Refactorings
	Extract Method
	Inline Method
	Move Method
	Move Method Alternative

	More Example Refactorings
	Introduce Factory
	Introduce Parameter
	Extract Superclass
	Extract Class

	Conclusion

	Results on Tests
	Impact on Correctness of Tests
	Limitations and code assumptions
	Code Change Analysis
	Change Data Collection
	Determine Exact Change
	Change Analysis Module
	Changes object
	Change Determination

	Impact on Tests
	Filtering changes
	Impact determination

	Conclusion

	Creating advice
	Global advice
	Detailed advice
	Advice object
	Conclusion

	Presentation of advice
	Advice as a refactoring
	Advice in AST-Rewrites

	Textual advice
	Language
	Presentation style

	Conclusion

	Plug-in
	Study
	Custom Plug-in
	Existing Retestoring Plug-in
	The Advice Addition

	Advice creation Plug-in extension
	Versions

	Validation
	Test case
	Additional test cases
	Conclusion

	Related Work
	XUnit Test Patterns & Test Smells
	Software Evolution
	Conclusion

	Conclusion
	Conclusion - Research Questions
	Contributions
	Software
	Insights & Discussion

	Evaluation

	Future work
	Test suite analysis
	Advice presentation
	Automatic advice execution
	Advice interface
	White-box Tests
	Minor tasks

	Bibliography
	Acronyms
	Glossary

