
Integrated Test Development
An integrated and incremental approach to write software of high quality

A. Bijlsma
H.J.M. Passier
H.J. Pootjes
S. Stuurman

Lex.Bijlsma@ou.nl
Harrie.Passier@ou.nl
Harold.Pootjes@ou.nl
Sylvia.Stuurman@ou.nl

Open Universiteit
Heerlen, The Netherlands

ABSTRACT
Creating test cases is a difficult task for students. The number
of existing recommendations on how to create test cases is over-
whelming. There is a lack of guidelines on how to apply those
recommendations one step after another. This problem even be-
comes more complicated when students are taught to refactor their
code as a habit. We propose an approach to teach students how to
develop and test their code systematically, with refactoring inte-
grated. In our approach, we pay attention to both functionality and
robustness.

CCS CONCEPTS
• Software and its engineering → Software design engineer-
ing; Software development techniques;

KEYWORDS
Testing, Refactoring

ACM Reference Format:
A. Bijlsma, H.J.M. Passier, H.J. Pootjes, and S. Stuurman. 2018. Integrated
Test Development: An integrated and incremental approach to write soft-
ware of high quality. In Proceedings of The 7th Computer Science Educa-
tion Research Conference (CSERC’18). ACM, New York, NY, USA, 12 pages.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Students in Software Engineering encounter difficulties with test-
ing their software products [5]. They often use a trial and error
approach to find and fix errors. Many students have the following
ideas about testing software [7, 20]:

• a program is correct if the compiler accepts it,
• if a program runs and produces some output that looks rea-
sonable, it will work well in all other cases,

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
CSERC’18, October 2018, Saint Petersburg, Russia
© 2018 Copyright held by the owner/author(s).
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

• when a program looks correct but the output is not right,
trying to switch some things will get the output right, and

• once a program produces output according to the instructor’s
data, the development process is finished.

In addition to the use of these wrong ideas about correctness,
many Software Engineering students encounter difficulties in com-
posing efficient and effective test suites [28]. For example, many
students are not able to create a complete test suite without the use
of a code coverage tool, the suites they compose often contain a
large number of redundant test cases, and they have a tendency to
perform minimal and ineffective amounts of testing [4, 15, 28]

These findings correspond with our own experiences. For ex-
ample, in a course about web application development, students
often fail to develop adequate test cases for even simple JavaScript
functions: they define an unnecessarily large number of test cases,
many of those redundant, and yet they often miss crucial test cases.
Overall, we observe the problem that students develop test cases
without using an explicit procedure: test cases seem to be composed
in an ad hoc manner.

We think that a solution might be to provide students with an
explicit procedure to develop test cases.

The problem is more complex, because often, code is not devel-
oped in one go. To satisfy non-functional aspects such as readability
and maintainability, code is refactored a number of times. Refactor-
ing code can easily affect existing test cases [6]. For example, a new
function can be added (using function extraction), or a complex
control flow can be simplified. In the first case, extra tests should
be added. In the second case, test cases should be adjusted to satisfy
certain coverage criteria.

Neither Test First, nor Test Last approaches really help in the
problem of creating test cases in a development process that con-
tains refactorings. Test First approaches, with Test Driven Devel-
opment (tdd) as its most widely known instance, are software
development practices in which test cases are written before the
code is implemented [8]. In Test Last approaches, the development
of test cases takes place when the function’s specification and imple-
mentation are ready. As we will describe in Section 2 and Section 3,
both approaches have their own advantages and disadvantages.
For now, we state that neither approach provides any advice as to
which test techniques should be applied and in which order, and

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

CSERC’18, October 2018, Saint Petersburg, Russia A. Bijlsma et al.

neither approach provides guidelines on how to handle the problem
of testing after a refactoring.

To summarize, the problem we see in teaching students how to
test, is a lack of explicit, step by step guidelines on how to develop
test cases, and how to maintain test cases after refactorings.

The importance of high quality software needs no argument. It is
our duty as lecturers to teach students the importance of producing
software of high quality. Systematic testing and refactoring are im-
portant techniques to achieve this goal. To teach systematic testing
effectively, the following three conditions should be satisfied:

(1) Testing is a recurring activity throughout the whole Software
Engineering curriculum and is certainly not a distinct or even
a single topic [5].

(2) Testing should not be an activity on its own, but should be
integrated in an approach to write software of high quality.
We will elaborate on this condition in Sections 3 and 4.

(3) Testing is a complex activity and as such should be supported
by some procedural guidance [19, 30, 31].

In this report paper, we focus on conditions two and three, i.e. we
will develop an integrated procedure to develop and test software
systematically. The unit that we focus on, is the unit of a function.
As far as we know, such an integrated procedure is lacking. With a
procedure, we mean a step-by-step recipe as for example used by
Felleisen et al. [11].

Terminology. We use the terms Test suite and Test case as follows:
A Test case is a set of test inputs and expected results to test a par-
ticular execution path. Because we focus on function development,
the case is a single function. A Test suite is a set of related test cases.
A suite may contain initialization and cleanup actions specific to
the test cases included.

Contributions. We have two contributions. First, we describe an
incremental and integrated procedure to develop and test code of
high quality. The procedure is independent of the programming
language or paradigm, with the restriction that we rely on strongly
typed languages to prevent having to check whether every input
variable conforms to the type that we specify. This contribution is
not about approaches, techniques or methods for the development
of test cases only. Our contribution is a procedure defining which
tests should be created, and in which order, in relation to an iterative
and incremental development process.

Secondly, we argue why the procedure developed consists of the
right steps in the right order.

Structure of the paper. We describe related work in Section 2. In
Section 3, we describe the three well known characteristics of tests
that we focus on in our procedure, namely: 1) the level of testing
(for example an application or a function), 2) the main approaches
(specification based or implementation based testing), and 3) the
aspect a test case focuses on (in our approach, core functionality
and robustness). In Section 4, we define an ordering on these test
activities and aspects described in Section 3. Based on these findings,
we describe the procedure in detail in Section 5. In Section 6, we
illustrate the detailed procedure at work based on the well known
Triangle problem (see for example [18]). In our examples, we use
TypeScript. Finally, we draw our conclusions and describe future
work in Section 7.

2 RELATEDWORK
There are many books about testing. For example, in Pragmatic Unit
Testing in Java with JUnit [17], attention is paid to structuring a unit
test in pre-test, test and post-test activities, using the various JUnit
syntax constructs, to test, for example, error conditions resulting in
an exception. In addition, a number of guidelines are mentioned that
might be important to compose a test case, for example, checking
boundary conditions, checking inverse relationships, and forcing
error conditions.

Another example of a book about testing is Software Testing:
A Craftsman’s Approach [18], describing a number of main test
techniques for unit testing, for example, Boundary Value Testing,
Equivalence Class Testing, and Decision Table-Based Testing. Each
of these main techniques contain several special techniques, for ex-
ample, Boundary Value Testing comprises Normal boundary value
testing, Robust boundary value testing, Worst case boundary value
testing, and Robust worst-case boundary value testing. Each of
these main techniques is provided with some guidelines. These
guidelines are merely points of attention, as opposed to describing,
for example, which techniques should be used in which order.

As far as we know, literature about procedural guidance for test
development does not exist, especially not for test development as
an integrated part of incremental and iterative software develop-
ment approaches. What is missing, is a higher level of procedural
guidance, i.e. an ordering on all these guidelines, especially in rela-
tion to the incremental and iterative development approaches.

2.1 Procedural guidance for testing
Punnekkat et al. mention that work on improving the test design
phase is new [27].

A roadmap of relevant challenges to be addressed [2] mentions
that one of the challenges is the fact that so many test methods and
criteria exist that the capability to make a justified choice, or rather
to understand how they can be most efficiently combined, becomes
a real challenge.

It is now generally agreed that it is more effective to use a combi-
nation of techniques, rather than applying only one, even if judged
the most powerful, because each technique may target different
types of faults, and will suffer from a saturation effect.

A suggestion for the test process is to use testing patterns [2].
Research should strive to produce effective solutions that are easily
integrated into development and do not require deep technical
expertise.

2.2 Testing in education
An experiment with students to evaluate the possible impact of
knowledge about software testing on the production of reliable code,
shows that such knowledge can improve code reliability in terms
of correctness in as much as 20% [23]. However, it was also found
that instructors that teach introductory programming courses lack
proper testing knowledge.

Even the book How to Design Programs [11], describing proce-
dural guidance to develop functions systematically, does not pay
much attention to how to use all the different types of tests and
how they fit into the steps as part of the procedure.

Integrated Test Development CSERC’18, October 2018, Saint Petersburg, Russia

2.3 Test First, and Test Late approaches
Test First approaches, with tdd as its most widely known instance,
are software development practices in which test cases are written
before the code is developed [1, 8, 13]. In a first step, the interface of,
for instance, a function, is specified. After that, a test comprising a
number of test cases is developed, to verify the function’s behavior.
These test cases are considered as a specification of the function
to be developed. Finally, the body of the function is completed
throughout an iterative process, consisting of the activities coding,
refactoring and testing, until all test cases succeed.

In Test Last approaches, testing is done after coding. In these
approaches, the development of test cases takes place when the
function’s specification and implementation are ready.

Both approaches have their own advantages and disadvantages.
An extensive comparison of the two approaches [13] suggests that
the main advantage of the Test First methodology lies in the fact
that it encourages developers to consistently take fine-grained refac-
toring steps. Another advantage is that this approach forces the
programmer to specify the unit’s desired behavior in the form of
test cases in advance. On the other hand, Scanniello et al. [29]
found that applying the Test First approach tdd often leads to low
quality code, i.e. the process encourages developers to write quick-
and-dirty code to make the tests pass. Subsequent improvement of
the code’s quality by refactoring is often ignored, resulting in bad
quality code.

Test Last approaches on the other hand, enables one to take the
code structure into account, thus ensuring that test cases cover
all execution paths and focus on loci where trouble may occur.
This is often called ‘White Box Testing’, as opposed to ‘Black Box
Testing’ that uses only the specification (we will use the terms
implementation based testing and specification based testing in
this paper). Also, observe that in a modern iterative development
process, where both implementation and specification refinement
proceed iteratively, practically all testing takes place when some
features have already been implemented and other features are yet
to be realized. Obviously, this tends to blur the distinction between
early and late testing.

The Test First as well as the Test Last approach do not provide
any advice as to which tests should be applied and in which order.
Logically, Test First approaches start with some specification based
based tests, but at some time, certain implementation based tests
should be added too!

2.4 Related issues
Several papers, e.g. the one by Falessi and Kruchten [9], discuss
the concept of technical debt. This is defined [24] as ‘a design or
construction approach that’s expedient in the short term but that
creates a technical context in which the same work will cost more
to do later than it would cost to do now (including increased cost
over time)’. In terms of testing, this means that any additions or
modifications made during iterative program development, must be
reflected in the test suite, either by adding new tests or by relocating
existing ones. Parodi, Matalonga, Macchi and Solari [26] did an
experiment with undergraduate students, expecting to find that
applying tdd would have less Technical Debt than those developed

with Test Last and ad hoc programming. However, the test results
dit not produce any evidence to confirm this.

Punnekkat et al. [27] developed an analysis method based on
identifying mistakes made during test case design, resulting in
a categorization of mistakes and a meta-method to improve the
effectiveness of test case construction. They describe some problems
we think are addressed by our approach. First, they mention that
a known source of problems is formed by boundaries. Boundaries
should always be tested, but are often missed in practice.

Secondly, they observed that students find it easier, in general,
to define valid input than to define invalid input, and as such use
mostly obvious test cases, and often do not vary in inputs, resulting
in low coverage and less robust systems.

3 ACTIVITIES AND ASPECTS OF TESTING
There are many different kinds of tests. These tests can be catego-
rized in several ways. Two main categories can be distinguished:
testing by experimenting with the code behavior and analyzing the
implementation and/or the related design products [14]. In our
approach, we mainly focus on the first category, testing by ex-
perimentation, also called dynamic testing. The second category,
analyzing, encloses methods as, for example, code walk-throughs,
code inspections and correctness proofs, which are out of scope in
this report, although, we use code inspection in our procedure.

We distinguish three characteristics of dynamic tests [14, 18]: 1)
the level of testing, 2) the approaches for testing, and 3) the aspect
a test case focuses on. In the next section, we define an ordering on
these approaches and aspects.

3.1 Test level
The first characteristic we consider is the level a test is applied
on. Do we apply a test on a single software component or do we
test a complete system consisting of several software components?
In test literature, a component is often called a unit [3]. Testing a
single software component is then called unit testing. A unit can
be, for example, a function, a method, a class, a module, or even a
subsystem [3]. The other level of testing, system testing, focuses on
complete systems consisting of a number of components. In our
approach, we focus on unit testing, where a unit is considered to
be a function or a method.

3.2 Test approaches
There are two main approaches to test a unit: specification based
(‘black box’) testing and implementation-based (‘white-box’) test-
ing [14].

Specification based testing means testing a piece of software with-
out any knowledge of its implementation. Test cases are developed
and their results evaluated solely on the basis of the specifications
of the unit under test, i.e. what the piece of program is intended to
do. Specification based is also called functional testing. Techniques
to use for specification based tests are boundary value testing,
decision-table-based testing, equivalence classes testing, and the
cause-effect-graph technique [14, 18].

Implementation based testing on the other hand, uses information
about implementation details, for example, the condition part of
an if-then-else statement. Implementation based testing is also

CSERC’18, October 2018, Saint Petersburg, Russia A. Bijlsma et al.

called structural testing; the program’s structure is used explicitly to
derive tests. Implementation based tests can be classified according
to certain coverage criteria, as, for example, in increasing finesse,
the statement coverage criterion, the edge coverage criterion, the
condition coverage criterion, and the path coverage criterion [14].

Having several coverage criteria raises the question ‘What cov-
erage criterion should be used?’. In general, there are no rules for
determining ‘the right’ coverage criterion. As stated above, the con-
dition coverage criterion is stronger than the statement coverage
criterion, but it is known that satisfying the condition coverage
criterion does not guarantee that all faults are detected [16]. The
general advice is to combine several coverage criteria together and
to use them in a practical way to find the critical parts in the code.

Tools can help to measure how thoroughly software is tested. A
number of tools to measure coverage criteria exist; some of them
have unique features tailored to a certain application domain [32].

When compared to the ‘Test First’ and ‘Test Late’ approaches
that we discussed in Section 2.3, we notice that in the ‘Test First’
approach, the tests are considered to function as the specification,
while specification based tests assume the existence of an explicit
specification. ‘Test Late’ approaches may use both specification
based tests and implementation based tests.

3.3 The aspects a test case focuses on
An important quality of a test or test case is that it only tests one
thing, or one aspect, at a time [17]. Our approach addresses the
aspects core functionality and robustness of a unit. Other aspects
are, for example, performance, security, profiling and logging. We
suppose that our approach also works for those aspects, but we do
not cover them in this paper.

3.3.1 Testing core functionality. The first aspect we focus on is
the correctness of the core functionality of a function. We specify
core functionality as a precondition-postcondition pair, where the
precondition specifies input values such that the function’s body
reaches the post condition, without a need for testing on unexpected
input values. Such a precondition is called strong. Thus, testing of
core functionality means taking input values such that the strong
precondition is satisfied.

The term core functionality bears comparison with the termmain
success scenario as is used in use case modeling, part of the uml
language [21]. A main success scenario is described as a typical
unconditional happy path scenario of success. A difference, how-
ever, is that our concept of core functionality concerns one unit of
software, i.e. a function or a method yielding a result value, whereas
a use case concerns usually a number of sequences of function calls
that a system as a whole performs yielding a result of value to an
actor.

3.3.2 Testing robustness. The second aspect we focus on is ro-
bustness. Robustness is about how well software reacts in abnormal
conditions [25]. Leino [22] advocates that every program should
have two specifications, one for the case where it ends normally
and another one for the case where something goes wrong. Here,
we distinguish between problematic input values as well as internal
errors.

A problematic input value is a value that causes a processing
error while it is executed by the implementation without taking
special measures. Robustness regarding problematic input values is
reached by weakening the precondition, in an extreme as making
the precondition true. As a consequence, the function’s arguments
must be tested on suitability, and, in case of an unsuitable value, a
special action must be taken, for example, throwing an exception.
Generally, by weakening a precondition one has to consider what to
do with problematic input values leading to a non success scenario.
Possibilities are, for example, to throw an exception or to return a
special value such as -1. Considerations depend on, for example,
the required functionality of the function, the context in which the
function is called, and the required efficiency of the function [22].

Weakening the precondition means adapting the specification
and changing the implementation. As a consequence, the speci-
fication based tests and the implementation based tests must be
adjusted.

Robustness regarding internal errors concerns implementation
related errors, for example possible overflow occurrences or read
actions of a file that does not exist. These type of errors can be
diagnosed by inspection of the implementation, i.e. code inspec-
tions [14]. The results of these diagnoses result in code adaptions,
as for example an extra exception, and should be incorporated in
the implementation based tests too.

4 ORDERING THE ACTIVITIES AND
ASPECTS

In this section, we discuss ‘When to test what?’, i.e. we define a
logical order on the activities and aspects described in the previous
section. This ordering forms the basis for the step by step procedure
that we describe in the next section.

Core functionality. We start with the aspect core functionality.
Testing the core functionality of a function implies specification
based as well as implementation based testing. A specification
based test (sbt) is based on the specification that specifies the core
functionality. An implementation based test (ibt) is based on the
implementation that realises the specified core functionality. The
implementation (impl) is based on the specification too. As such,
an implementation based test is supplementary to a specification
based test. Figure 1 shows these based-on relations, i.e. the meaning
of each arrow is ‘provides the information needed to compose’.

To be able to specify the function’s signature, precondition and
result (spec), we need to analyze what the function should do in
terms of inputs, processing and output (ana). Analyzing and specify-
ing are important activities, because undetected faults have mostly
to do with incomplete specifications and missing logic [16] and
leaving out specifications often leads to low quality code [29].

Notice that Figure 1 shows only the information needed to de-
velop specification based and implementation based tests. The fig-
ure says nothing about other activities, for instance, running the
tests, or what to do in cases of test failures, i.e. removing errors,
or even improving the analysis, specification, implementation and
test cases. These topics will be included in Section 5. The dotted
arrow on the right symbolizes these other activities.

Integrated Test Development CSERC’18, October 2018, Saint Petersburg, Russia

ana spec impl

ibt

sbt

Figure 1: The information needed to test the aspect Core
functionality

Robustness. The aspect robustness assumes a specified core func-
tionality. As we have seen in the previous section, making a function
robust means: 1) weakening the core function’s precondition, and
2) extending the function’s body with code to test the arguments
on suitability and, if necessary, to perform special actions in cases
unsuitable values are provided. This means that the function’s spec-
ification and implementation both change. As a consequence, the
specification based tests and the implementation based tests must
be adjusted.

Again, to be able to specify the new precondition and signature
(spec), we need to analyze to which extent the precondition should
be weakened andwhat to do in cases of unsuitable parameter values,
for example, throwing an exception (ana). The specification based
test (sbt) as well as the implementation (impl), both based on the
changed specification, should be be adapted. An implementation
based test (ibt), based on the implementation, should be adapted
too.

General ordening. We can see that the activity diagram of Fig-
ure 1 is applicable to the aspect core functionality as well as to the
aspect robustness. Figure 2 shows that the diagram is, as we assume,
applicable to the other aspects mentioned in the introduction of
this section, for example, performance and security: for each aspect,
the specification so far is extended, based on an analysis resulting
in an extension of the specification based test as well as extensions
in the implementation and accompanying implementation based
test.

ana spec impl

ibt

sbt

aspect i

Figure 2: The general information model to test an aspect

In Figure 3, one sees the general procedure for integrated test
development. The implementation is adjusted until both the speci-
fication based tests and the implementation based tests no longer
give any errors. It then may be refactored to enhance the quality of
the code. Refactoring may have implications for the implementa-
tion based tests, and even for the specification, and specification
based tests. Then, the cycle can be instantiated for another aspect.
In the next Section, we will explain this procedure in detail.

Figure 3: General procedure for integrated test development

5 THE PROCEDURE
The purpose of this paper may be expressed as the ambition to
extend Felleisen’s method [11] with a step-by-step recipe for setting
up unit tests. Therefore, we take the design recipe of Felleisen as a
starting point:
Step 1. Write as documentation the main purpose of the function,

the signature of the function (the function’s name, the pa-
rameter’s names and their types, and the function’s return
type).

Step 2. Create test cases for the function.
Step 3. Write the body of the function.
Step 4. Test the function using the test cases.
Step 5. If needed, refactor the function’s body to improve the imple-

mentation on for example readability and run the test cases
again.

This recipe has no explicit steps for testing other than to create
test cases and to test the function using the test cases. In this pa-
per, we exend this method with a step-by-step recipe for setting
up unit tests, enclosing the effective techniques of specification
based testing, implementation based testing, code inspection and
refactoring [10]. In addition to attention to core functionality, we
strive for robustness.

As is substantiated in the previous section, drawing up a unit test
according to our approach assumes a specification (to compose the
specification based test) as well as an implementation (to compose
the implementation based test). Furthermore, the specification, the
specification based tests, the implementation and the implementa-
tion based tests are developed in an iterative and incremental way:
aspect after aspect is analyzed, specified, implemented and tested.

Refactoring. After an aspect has been implemented and tested,
an obvious additional step is to refactor the code that has been
produced so far, that is, to optimize its structure (for example, to im-
prove readability and/or extensibility) without changing the code’s

CSERC’18, October 2018, Saint Petersburg, Russia A. Bijlsma et al.

external behavior [12]. Refactoring is an integral part of most itera-
tive and incremental software development approaches [21].

After refactoring, the optimized code can be tested using the
same specification based test. If, through refactoring, the structure
of the code has been changed, the implementation based test should
be examined and adapted. Furthermore, there could be several
reasons to optimize the specification, or even to perform some
extra analysis, as the dashed arrows in Figure 3 indicate.

In the next two subsections, we instantiate the general procedure
for integrated test development for the aspects core functionality
and robustness.

Limitations. In our approach, we rrequire functions to be pure
functions, i.e. functions with the property that the output is solely
dependent on the input values. These functions are deterministic,
that is, with the same input they always return the same output.

5.1 The step-by-step guidelines
5.1.1 Aspect: Core functionality. During the first iteration, we

focus on the aspect core functionality.
Analyze Analyze the problem and determine the function’s

signature, including the function’s name, the types of the
input parameters and the output type. As a guideline, keep
in mind that a function should have one single goal. If neces-
sary, design special composite types for the input parameters
and the function’s result value. Think about a precondition
and the result of the function. During this step, the precon-
dition can be as strong as possible, so you can focus on the
core functionality of the algorithm without concerning, for
example, robustness issues. At this stage, the specification
can be written in a natural language or in a more formal
language.
Products: 1) a description of the function’s goal, 2) the func-
tion’s signature including the function’s name, parameters’
names and types, and the output type, and 3) the function’s
precondition.

Specify Write the results of the analysis step into a specifica-
tion in a more formal language (in our case jsdoc comment
notation), consisting of the function’s name, description, pa-
rameter names and types, precondition and the result type.
The jsdoc tags to use are:
@function to give the function’s name,
@description to describe the goal of the function,
@param to describe the function’s arguments in terms of

names and types,
@precondition a predicate on the argument values that

must be statisfied1,
@returns to describe the function’s return value.
Notice how the analysis products are mapped to the jsdoc
tags as follows: 1) the function’s description is used to define
the description tag, 2) the function’s signature is used to
define the function tag, the param tag as well as the return
tag, and 3) Vervangen door: When working on the core
functionality, one chooses a strong precondition.

1Actually, the precondition tag is not an existing jsdoc tag, but can be defined as a
custom tag.

Students may, thus, analyze the problem using natural lan-
guage, and are forced to formalize their analysis in the spec-
ification step (in particular with regard to the precondition
and the specification of the
@returns). Finally, implement the function as a stub.
Products: 1) a specification in jsdoc comment notation, and
2) the function implemented as a stub.

Define specification based tests Write examples of function
calls with the expected output, based on the problem analysis
and the function’s signature, preferably in the form of a table.
Consider which techniques to use, for example, boundary
value testing. Write the specification based tests taking the
preconditions into account. Run the tests, which should fail
because of the stub, in order to check whether the test suite
functions well.
Product: Specification based tests.

Implement Design the function’s body, possibly first in pseu-
docode, and implement the function’s body. The results of
the previous step, the examples of function calls with ex-
pected output, will probably help in writing the algorithm.
As soon as the function’s body is finished, run the specifica-
tion based tests. If a test fails, improve the code so that the
tests succeed.
Product: A running implementation of the function accord-
ing to the functional specification.

Define implementation based tests Now we have the im-
plementation at our disposal, we are able to design and im-
plement implementation based tests. Think about the cov-
erage criteria that are valuable. Also, think about how to
test whether the arguments that are used in function calls to
other functions, satisfy the precondition of those functions.
Remember that implementation based testing can lead to
extra partitions of the input domain, based on the code’s
structure. Finally, run the implementation based tests. Again,
if a test fails, improve the code so that the specification based
as well as the implementation based tests succeed.
Products: 1) implementation based tests, and 2) a running
implementation of the function according to the functional
specification.

Refactor Often, the implementation can be improved by refac-
toring, for example, by removing redundant code through
an additional function, or by simplifying a complex control
structure. In case of refactoring, the specification based test
remains applicable. The implementation based tests, how-
ever, should often be adapted. When a new function is added,
the procedure is followed again for that function.
Products: 1) a refactored implementation, 2) if needed, an
adapted implementation based test, and 3) a running im-
plementation of the function according to the functional
specification.

The function so far has core functionality but is, probably, not yet
robust.

5.1.2 Aspect: robustness. In the second iteration, we focus on
the aspect robustness.

Analyze Consider to weaken the precondition. Retain the orig-
inal postcondition in case the original precondition holds

Integrated Test Development CSERC’18, October 2018, Saint Petersburg, Russia

(so that the contract is not broken), but add clauses to spec-
ify other cases. This depends on, for example, the context
in which the function will be used. Think about the result
value of the function when a problematic input value occurs,
for example, a special value such as minus one. When the
function should throw an exception, the function’s signature
should be extended. If a special value should be returned in
some cases (sich as −1), the postcondition should be adapted
as well. Furthermore, the precondition and the result should
be adapted according to the analysis results.
Products: Possible adjusted 1) function’s signature, i.e. the pa-
rameters’ types changed, the exceptions that can be thrown,
and the changed result type, and 2) function’s precondition
and postcondition (in such a way that the original contract
is not broken).

Specify If the precondition is weakened, the specification in
jsdoc should be adapted. In case of an exception, the tag
@throws should be used.
Products: 1) adjusted jsdoc specifications, and 2) adjusted
stub.

Define specification based tests When the precondition is
weakened, the specification based tests should be extended.
That is, input values from additional partitions containing
problematic values should be considered, resulting in addi-
tional specification based tests. These tests should take into
account the special return values, for example, minus one or
a thrown exception. Run the tests, which should generally
fail because of the missing implementation parts, in order to
check whether the test suite functions well.
Product: extended specification based tests.

Implement First, design and implement additional code that
tests on possible problematic input. This code often com-
prises some control flow, testing the input values on suitabil-
ity. When the input values are suitable, the core functionality
can be performed. When the input values are problematic,
a special value can be returned or an exception thrown, ac-
cording to the specification. The additional code, testing on
possible problematic input, wraps the existing non-robust
version using the following pattern:

function robustX(parameters) {

if (!isOK(parameters) {

throw new RangeError("Arguments not ok");

}

return x(parameters);

}

As soon as the function’s body is extended, run the speci-
fication based tests. If a test fails, improve the code so that
the specification based tests succeed. Furthermore, search
the entire implementation for implementation related errors,
for example, possible overflow occurrences. If there is an
implementation related error, take the measures needed. If,
for example, an additional exception should be thrown, the
specification, as well as the specification based tests should
be tailored.
Product: a running robust implementation of the function
according to the functional specification.

Define implementation based tests The tests should be ex-
tended with respect to the added control flow. Run the im-
plementation based tests. If the test fails, improve the code
so that the specification based as well as the implementation
based tests succeed.
Products: 1) implementation based tests, and 2) a running
implementation of the function according to the functional
specification.

Refactor Finally, if possible, improve the implementation by
refactoring. The specification based tests remain applicable.
The implementation based tests, however, should often be
adapted.
Products: 1) a refactored implementation, 2) if needed, an
adapted implementation based test, and 3) a running im-
plementation of the function according to the functional
specification.
Note that in this step we do much more than testing; indeed,
the approach shows how testing is interleaved with other
development activities.

6 THE PROCEDURE APPLIED
6.1 The Triangle problem
We use the Triangle problem (see, for example, [18]) to show the
use of the procedure.

Input. The triangle program has three positive numbers a, b, and
c as input, representing the length of three line segments.

Output. In a first version, the program has to indicate whether
or not these three line segments form a triangle. In a second ver-
sion, the program should also indicate the type of the triangle, for
example, Equilateral, Isosceles, or Scalene. When the three num-
bers do not form an triangle, the output should be ‘No triangle’.
Additionally, we require a, b, and c positive integers, that are less
than 200.

The first version is an application of the ‘divide et impera’ strat-
egy, i.e. first solve a simpler version of the problem and rely on this
solution to find the solution for the more complex problem.

In the next subsections, we will follow our procedure and explain
each step.

6.2 Aspect core functionality, output boolean
Analyze The problem description gives us the precondition

that all three numbers are greater than 0 and smaller than 200.
We have chosen isTri as name for the function, which will
have three arguments of type number. For a proper triangle,
the sum of every two sides must be greater than the third
side.
Goal: Do three line segments form a triangle?
Signature: isTri(a: integer, b: integer, c: integer): boolean
Precondition: 0 < a < 200, 0 < b < 200, 0 < c < 200
Returns true if (a + b > c) ∧ (b + c > a) ∧ (c + a > b)

Specify Based on the analysis, we can write the specification.
Furthermore, we can implement the function as a stub. The
specification in JSDoc notation is as follows

/**

CSERC’18, October 2018, Saint Petersburg, Russia A. Bijlsma et al.

* @function isTri

* @description Do a, b and c form a triangle?

* @param a integer: the length of side a

* @param b integer: the length of side b

* @param c integer: the length of side c

* @precondition 0 < a < 200,

0 < b < 200,

0 < c < 200

* @returns true if (a + b > c) and

(b + c > a) and

(c + a > b),

otherwise false

*/

export function isTri(a: number ,

b: number ,

c: number): boolean {

return false;
}

Notice that in this stage, the precondition is as strong as
possible, so we can focus on the core functionality of the
algorithm only.

Define specification based tests Based on the way we for-
mulated what should be returned, we create seven function
calls that either satisfy or dissatisfy these conditions. Three
of them test on boundaries. Table 1 shows the corresponding
test cases.

a b c Expected output
1 3 4 5 true
2 2 3 10 false, because ¬(a + b > c)
3 2 10 3 false, because ¬(a + c > b)
4 10 2 3 false, because ¬(b + c > a)
5 2 3 5 false, because ¬(a + b > c), boundary
6 2 5 3 false, because ¬(a + c > b), boundary
7 5 2 3 false, because ¬(b + c > a), boundary

Table 1: Test cases for function isTri

Implement Based on the analysis, it is easy to write the body
of function isTri.

export function isTri(a: number , \\

b: number , \\

c: number): boolean {

return a + b > c && a + c > b && b + c > a;

}

If we run our tests, all test cases succeed.
Define implementation based tests For the function so far,

there are no additional implementation based tests. The spec-
ification based tests and implementation based tests have
the same classes of the input domain and corresponding
boundaries.

Refactor Refactoring is not necessary.

The function so far has core functionality, but is not robust yet.
Before making the the function robust, we first apply the procedure
to a second version of the Triangle problem, i.e. instead of output
bool, the output will have the type of triangle.

6.3 Aspect core functionality, output triangle
Analyze We have to determine the kind of triangle. To do this,

we define a result type. We could use a string, but it is better
to make use of an enumeration type.
enum TriangleType {

Equilateral ,

Isosceles ,

Scalene ,

NotATriangle

}

Table 2 shows the rules to determine the kind of triangle,
when it is certain that we have a triangle). Notice that the
order of these rules is of importance.

Nr Name Rule
1 Equilateral a=b=c
2 Isosceles a = b ∨ b = c ∨ a = c
3 Scalene a , b , c

Table 2: Rules for the kind of triangle

Specify We extend the specification and stubs with the result
type TriangleType. We rename the function
/**

* @function triType

* @description Which kind of triangle do sides

a, b and c form?

* @param a integer: the length of side a

* @param b integer: the length of side b

* @param c integer: the length of side c

* @precondition 0 < a < 200,

0 < b < 200,

0 < c < 200

* @returns NotATriangle if

(a + b <= c) or

(a + c <= b) or

(b + c <= a)

otherwise:

Equilateral if a=b=c

Isosceles if a=b or b=c or a=c

otherwise Scalene

}

*/

export function triType(a: number , b: number , c:

number): TriangleType {

return NotATriangle;

}

Define specification based tests Based on the test cases from
the previous phase and the rules to determine the kind of
triangle, we can derive the test cases, see Table 3. Notice,
that the first six test cases are the same as the test cases two
until seven in Table 1.

Implementation To implement this extended version of the
algorithm, we use the previous version. In this case, we
use function isTri to determine whether a, b and c form a
triangle. If so, we can further investigate the kind of triangle.
If the input parameters do not form a triangle, the value
NotATriangle is returned.
export function triType(a: number ,

b: number ,

Integrated Test Development CSERC’18, October 2018, Saint Petersburg, Russia

Case a b c Expected output
1 2 3 10 NotATriangle: ¬(a + b > c)
2 2 10 3 NotATriangle: ¬(a + c > b)
3 10 2 3 NotATriangle: ¬(b + c > a)
4 2 3 5 NotATriangle: ¬(a + b > c), boundary
5 2 5 3 NotATriangle: ¬(a + c > b), boundary
6 5 2 3 NotATriangle: ¬(b + c > a), boundary
7 5 5 5 Equilateral: a = b = c
8 5 5 6 Isosceles: a = b
9 5 5 15 NotATriangle: ¬(a + b > c)
10 6 5 5 Isosceles: b = c
11 15 5 5 NotATriangle: ¬(b + c > a)
12 5 6 5 Isosceles: a = c
13 5 15 5 NotATriangle: ¬(a + c > b)
14 5 3 4 Scalene:

Table 3: Specification based test cases

c: number): TriangleType {

let res = TriangleType.NotATriangle;

if (isTri(a,b,c)) {

if (a===b && b===c) {

res = TriangleType.Equilateral;

}

else if(a===b || b===c || a===c) {

res = TriangleType.Isosceles;

}

else {

res = TriangleType.Scalene;

}

}

return res;

}

Define implementation based tests The specification based
tests already covers the boolean expressions in the if-parts
completely for Equilateral and Scalene. For Isosceles, how-
ever, there is only one test case, so we add two cases, b===c
and a===c. Table 4 shows the resulting implementation based
tests.

Case a b c Expected output
1 2 3 10 NotATriangle: ¬(a + b > c)
2 2 10 3 NotATriangle: ¬(a + c > b)
3 10 2 3 NotATriangle: ¬(b + c > a)
4 2 3 5 NotATriangle: ¬(a + b > c), boundary
5 2 5 3 NotATriangle: ¬(a + c > b), boundary
6 5 2 3 NotATriangle: ¬(b + c > a), boundary
7 5 5 5 Equilateral: a = b = c
8 5 5 6 Isosceles: a = b
9 6 5 5 Isosceles: b = c
10 5 6 5 Isosceles: a = c
11 5 3 4 Scalene: a , b , c
Table 4: Implementation based test cases for triType

Refactor We apply the ‘Decompose conditional’ refactoring
[12] and use these functions in the if-parts in function triType.
The resulting code is as follows:

/**

* @function hasThreeEqual

* @description Are all arguments equal?

* @param a

* @param b

* @param c

* @precondition true

* @returns true if a=b=c otherwise false

*/

export function hasThreeEqual(a: number , \\

b: number , \\

c: number): boolean
{

return a === b && b === c;

}

/**

* @function hasTwoEqual

* @description Are the two arguments equal?

* @param a

* @param b

* @param c

* @precondition true

* returns true if a=b or a=c or b=c

*/

export function hasTwoEqual(a: number , \\

b: number , \\

c: number): boolean {

return a === b || b === c || a === c;

}

export function triType(a: number , \\

b: number , \\

c: number): TriangleType {

let res = TriangleType.NotATriangle;

if (isTri(a, b, c)) {

if (hasThreeEqual(a,b,c)) {

res = TriangleType.Equilateral;

}

else if (hasTwoEqual(a,b,c)) {

res = TriangleType.Isosceles;

}

else {

res = TriangleType.Scalene;

}

}

return res;

}

Notice that it is not longer necessary to test function isTri ex-
plicitly, because we have used all the test cases to test function
triType.

6.4 Aspect robustness and additional
constraints

Analyze According to the problem description as formulated
by Jorgenson [18], the input parameters a, b, and c must
satisfy the following condition: 0 < a,b, c < 200. At the same
time, we weaken the precondition, i.e. we decide to have no
precondition at all. We decide that if an input parameter
does not confirm the extra condition, an error value will be
generated. The corresponding signature will be:
Goal: Do three line segments form a triangle?
Signature: isTri(a:number, b:number, c:number): boolean throws
RangeError

CSERC’18, October 2018, Saint Petersburg, Russia A. Bijlsma et al.

Precondition: true
Exception: RangeError, if ¬(0 < a,b, c < 200)

Specify The specification and signature of function triType

becomes:
/**

* @function triType

* @description Which kind of triangle?

* @param a integer: the length of side a

* @param b integer: the length of side b

* @param c integer: the length of side c

* @precondition true

* @returns the type of the triangle (one out

of TriangleType)

* @throws RangeError if not(0 < a,b,c <

200)

*/

export function triType(a: number , \\

b: number , \\

c: number): TriangleType

Define specification based test For the specification based
tests, we nowmust add test cases so that an exception of type
RangeError will be generated. For each argument we define
four test cases: one on the boundaries 0 and 200 and two for
values outside the specified range 0 < a,b, c < 200. Table 5
shows the resulting specification based tests.

a b c Expected output
1 2 3 10 NotATriangle: ¬(a + b > c)
2 2 10 3 NotATriangle: ¬(a + c > b)
3 10 2 3 NotATriangle: ¬(b + c > a)
4 2 3 5 NotATriangle: ¬(a + b > c), boundary
5 2 5 3 NotATriangle: ¬(a + c > b), boundary
6 5 2 3 NotATriangle: ¬(b + c > a), boundary
7 5 5 5 Equilateral: a = b = c ∧ ¬NotATrianдle
8 5 5 6 Isosceles: a = b ∧ ¬NotATrianдle
9 6 5 5 Isosceles: b = c ∧ ¬NotATrianдle
10 5 6 5 Isosceles: a = c ∧ ¬NotATrianдle
11 5 6 7 Scalene: a , b , c ∧ ¬NotATrianдle

12 0 5 5 RangeError: a < lower , boundary
13 -100 5 5 RangeError: a < lower , boundary
14 200 5 6 NotATriangle: a = upper , boundary
15 201 5 5 RangeError: a > upper , boundary
16 5 0 5 RangeError: b < lower , boundary
17 5 -100 5 RangeError: b < lower , boundary
18 5 200 6 NotATriangle: b = upper , boundary
19 5 201 5 RangeError: b > upper , boundary
20 5 5 0 RangeError: c < lower , boundary
21 5 5 -100 RangeError: c < lower , boundary
22 5 6 200 NotATriangle: c = upper , boundary
23 5 5 201 RangeError: c > upper , boundary

Table 5: Specification based test cases for triType

Implement Compared to the previous version, we now must
also check whether all arguments are in the range 0 to 200.
For this purpose, we write a function argsInRange with signa-
ture and stub:
/**

* @function argsInRange

* @description For all elements el of ar:\\

low < el < high ?

* @param ar array of numbers

* @param low lower boundary not included

* @param high upper boundary included

* @precondition low < high

* @returns true if for all elements of ar:

* low < el < high else false

*/

function argsInRange(ar: Array <number >, \\

low: number ,

high: number): boolean {

return true
}

Notice that we have used an array to make the function
more general. Also notice that we have a precondition low
< high. Because we use argsInRange as an internal function of
TriangleType, we can always take care that low < high holds.
Table 6 lists the test cases for this function.

Case a b c Expected output
1 [1,2,3,4,5,6,199,200] 0 200 true
2 [0,1,2,3,199,200] 0 200 false
3 [1,2,3,199,200,200.01] 0 200 false
4 [0,2,3,199,200.1] 0 200 false
Table 6: Specification based test cases for argsInRange

To implement the function argsInRange, we can use the stan-
dard array function every:
function argsInRange(ar: Array <number >, \\

low: number , \\

high: number): boolean {

return ar.every((el)=>{ return el > low && el <=

high});

}

Instead of modifying the function triType, we write a new
function triAngle that first checks the arguments. If the ar-
guments are not correct it throws an exception; otherwise it
calls function triType.
/**

* @function triAngle

* @description Which kind of triangle?

* @param a integer: the length of side a

* @param b integer: the length of side b

* @param c integer: the length of side c

* @precondition true

* @returns TriangleType

* @throws RangeError if not(0 < a, b, c < MAX

)

*/

export function triAngle(a: number , \\

b: number , \\

c: number): TriangleType {

let ar=[a,b,c];

function argsInRange(ar: Array <number >,\\

low: number \\

high: number):boolean {

return ar.every((el) => { return el > low && el

< high });

}

Integrated Test Development CSERC’18, October 2018, Saint Petersburg, Russia

if (! argsInRange(ar, 0, MAX)) {

throw new RangeError("Argument(s) not in range"

);

}

return triType(a,b,c);

}

Define implementation based test Now,we examine the code.
Because the arguments are between 0 and 200, overflow will
not occur. Because we use a language that does not know
integers, we have a problem: the comparison of floats. Sim-
ply using operator === may cause a problem, due to internal
representation and rounding errors. Instead, we can check
whether the absolute value of 0.1+0.2-0.3 is less than some
value EPS. For EPS, we can use the constant NUMBER.EPSILON.
So, instead of using operator ===, we use a function isEqual

(a: number, b: number): boolean that evaluates the expression
Math.abs(a-b)< NUMBER.EPSILON. As a result, we rewrite some
functions and use function isEqual in stead of using ===.

/**

* @function isEqual

* @description Compares two floating point numbers

\\

taking rounding errors into account

* @param a number

* @param b number

* @precondition true

* @returns true if a < b, otherwise false

*/

export function isEqual(a: number , \\

b: number): boolean {

return Math.abs(a-b) < Number.EPSILON;

}

Refactor There is no need for refactoring anymore.

7 CONCLUSIONS AND FUTUREWORK
We developed a stepwise procedure enclosing and ordering a se-
lected number of test methods, integrated in a process of analysis,
specification, implementation, testing, and refactoring, applicable
in a context of a first year course about software construction and
testing. Such a step by step instruction, for students, on how to
integrate writing tests while developing functions, including advice
on how to proceed after having refactored the code, was missing.

Our approach differs from both Test First and Test Last ap-
proaches. We use an explicit specification (instead of using tests
themselves as a form of specification, as is usable in many Test First
approaches), and in contrast with Test Last approaches, we create
tests before and after implementation, and, we revise the tests after
each refactoring.

With our approach, we have solved the problem that it becomes
a real challenge for students to understand how test methods and
test criteria may be combined most efficiently [2]. It is exactly this
absence of guidance where our approach jumps into, and gives
certain scaffolding. Our procedure can be considered as a process
pattern [2].

Our approach gives guidance to solve this problem, by distin-
guishing focusing on separate aspects in each cycle. Our approach
focuses on the aspects core functionality and robustness, and gives

guidance in the form of a step-by-step approach in which the func-
tion’s precondition is relaxed concerning the specification as well as
the implementation of the function. We presume that this approach
is applicable to other aspects as well.

We prevent students to write quick and diry code, as is often
seen in Test First approaches, because they are forced to analyse
the problem first, and write a precise specification. On top of that,
we have made refactoring code an explicit step in the procedure.

Another future enhancement of our guidelines could be to give
more detailed guidelines to create test cases for both specification
based testing and implementation based testing.

We have started to teach our students using this procedure, and
will report later about our findings.

REFERENCES
[1] Kent Beck. 2002. Test Driven Development: By Example. Addison-Wesley Logman

Publishing Co., Inc., Boston, MA, USA.
[2] Antonia Bertolino. 2007. Software Testing Research: Achievements, Challenges,

Dreams. In 2007 Future of Software Engineering (FOSE ’07). IEEE Computer Society,
Washington, DC, USA, 85–103.

[3] Robert V. Binder. 1999. Testing Object-oriented Systems: Models, Patterns, and
Tools. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA.

[4] J. Carver and N. Kraft. 2011. Evaluating the testing ability of senior-level computer
science students. In 24th IEEE-CS Conference on Software Engineering Education
and Training (CSEE T). Springer, Berlin, Germany, 169–178.

[5] Henrik Bærbak Christensen. 2003. Systematic Testing Should Not Be a Topic in
the Computer Science Curriculum! SIGCSE Bull. 35, 3 (June 2003), 7–10.

[6] Arie van Deursen and Leon Moonen. 2002. The video store revisited–thoughts
on refactoring and testing. In Proceedings of the 3rd International Conference on
eXtreme Programming and Flexible Processes in Software Engineering, XP 2002.
Springer, Berlin, Germany, 71–76.

[7] Stephen H. Edwards. 2004. Using Software Testing to Move Students from
Trial-and-error to Reflection-in-action. SIGCSE Bull. 36, 1 (March 2004), 26–30.

[8] Hakan Erdogmus, Forrest Shull, Burak Turhan, Lucas Layman, Grigori Melnik,
and Madeline Diep. 2010. What Do We Know about Test-Driven Development?
IEEE Software 27 (2010), 16–19.

[9] Davide Falessi and Philippe Kruchten. 2015. Five Reasons for Including Technical
Debt in the Software Engineering Curriculum. In Proceedings of the 2015 European
Conference on Software Architecture Workshops (ECSAW ’15). ACM, New York,
NY, USA, 28:1–28:4.

[10] Sheikh Umar Farooq and Smk Quadri. 2013. An Externally Replicated Experiment
to Evaluate Software Testing Methods. In Proceedings of the 17th International
Conference on Evaluation and Assessment in Software Engineering (EASE ’13).
ACM, New York, NY, USA, 72–77.

[11] Matthias Felleisen, Robert B. Findler, Matthew Flatt, and Krishnamurthi Shriram.
2001. How To Design Programs, An Introduction to Programming and Computing.
The MIT press, Cambridge, Massachusetts, Londen, England.

[12] Martin Fowler, Steven Fraser, Kent Beck, Bil Caputo, Tim Mackinnon, James
Newkirk, and Charlie Poole. 1999. Refactoring: Improving the Design of Existing
Code. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA.

[13] Davide Fucci, Hakan Erdogmus, Burak Turhan, Markku Oivo, and Natalia Juristo.
2017. A Dissection of the Test-Driven Development Process: Does It Really
Matter to Test-First or to Test-Last? IEEE Transactions on Software Engineering
43, 7 (2017), 597–614.

[14] Carlo Ghezzi, Mehdi Jazayeri, and DinoMandrioli. 1991. Fundamentals of Software
Engineering. Prentice-Hall, Inc., Upper Saddle River, NJ, USA.

[15] Hisham Haddad. 2002. Post-graduate Assessment of CS Students: Experience
and Position Paper. J. Comput. Sci. Coll. 18, 2 (Dec. 2002), 189–197.

[16] Hadi Hemmati. 2015. How Effective Are Code Coverage Criteria?. In Software
Quality, Reliability and Security (QRS), 2015 IEEE International Conference on.
IEEE, IEEE Computer Society, Los Alamitos, California, United States.

[17] Andy Hunt and Dave Thomas. 2003. Pragmatic Unit Testing in Java with JUnit.
The Pragmatic Bookshelf, Raleigh, USA.

[18] Paul C. Jorgensen. 2014. Software Testing: A Craftsman’s Approach (4st ed.). CRC
Press, Inc., Boca Raton, FL, USA.

[19] Paul A Kirschner, John Sweller, and Richard E Clark. 2006. Whyminimal guidance
during instruction does not work: An analysis of the failure of constructivist,
discovery, problem-based, experiential, and inquiry-based teaching. Educational
psychologist 41, 2 (2006), 75–86.

[20] Yifat Ben-David Kolikant. 2005. Students’ Alternative Standards for Correctness.
In Proceedings of the First InternationalWorkshop on Computing Education Research
(ICER ’05). ACM, New York, NY, USA, 37–43.

CSERC’18, October 2018, Saint Petersburg, Russia A. Bijlsma et al.

[21] C. Larman. 2009. Applying UML and Patterns: An Introduction to Object-Oriented
Analysis and Design and Iterative Development (3rd Edition). Prentice Hall PTR,
Upper Saddle River, NJ, USA.

[22] K. Rustan M. Leino. 1995. Constructing a program with exceptions. Inform.
Process. Lett. 53, 3 (1995), 159 – 163.

[23] Otávio Augusto Lazzarini Lemos, Fábio Fagundes Silveira, Fabiano Cutigi Ferrari,
and Alessandro Garcia. 2017. The impact of Software Testing education on code
reliability: An empirical assessment. Journal of Systems and Software 137, March
(2017), 497–511.

[24] Steve McConnell. 2013. Managing Technical Debt. Retrieved December
22, 2017 from https://www.sei.cmu.edu/community/td2013/program/upload/
technicaldebt-icse.pdf. (2013).

[25] B. Meyer. 1997. Object-Oriented Software Construction. Prentice-Hall, Upper
Saddle River, NJ, USA.

[26] Eugenia Parodi, Santiago Matalonga, Darío Macchi, and Martín Solari. 2016.
Comparing technical debt in student exercises using test driven development,
test last and ad hoc programming. In Computing Conference (CLEI), 2016 XLII
Latin American. IEEE, IEEE Computer Society, Los Alamitos, California, United
States, 1–10.

[27] Sasikumar Punnekkat, Sigrid Eldh, and Hans Hansson. 2011. Analysis of Mis-
takes as a Method to Improve Test Case Design. 2011 IEEE Fourth International
Conference on Software Testing, Verification and Validation (ICST 2011) 00 (2011),
70–79.

[28] Alex Radermacher, Gursimran Walia, and Dean Knudson. 2014. Investigating the
Skill Gap Between Graduating Students and Industry Expectations. In Companion
Proceedings of the 36th International Conference on Software Engineering (ICSE
Companion 2014). ACM, New York, NY, USA, 291–300.

[29] Giuseppe Scanniello, Simone Romano, Davide Fucci, Burak Turhan, and Natalia
Juristo. 2016. Students’ and Professionals’ Perceptions of Test-driven Develop-
ment: A Focus Group Study. In Proceedings of the 31st Annual ACM Symposium
on Applied Computing (SAC ’16). ACM, New York, NY, USA, 1422–1427.

[30] Jeroen J.G. van Merriënboer, Richard E. Clark, and Marcel B.M. De Croock. 2002.
Blueprints for complex learning: The 4C/ID-model. Educational Technology
Research and Development 50, 2 (2002), 39–61.

[31] Jeroen J.G. van Merriënboer and Paul A. Kirschner. 2013. Ten Steps to Complex
Learning, a systematic appraoch to four-component instructional design (second
ed.). Taylor & Francis, New York, NY, USA.

[32] Qian Yang, J. Jenny Li, and David M. Weiss. 2009. A Survey of Coverage-Based
Testing Tools. Comput. J. 52, 5 (2009), 589–597.

https://www.sei.cmu.edu/community/td2013/program/upload/technicaldebt-icse.pdf
https://www.sei.cmu.edu/community/td2013/program/upload/technicaldebt-icse.pdf

	Abstract
	1 Introduction
	2 Related work
	2.1 Procedural guidance for testing
	2.2 Testing in education
	2.3 Test First, and Test Late approaches
	2.4 Related issues

	3 Activities and aspects of testing
	3.1 Test level
	3.2 Test approaches
	3.3 The aspects a test case focuses on

	4 Ordering the activities and aspects
	5 The procedure
	5.1 The step-by-step guidelines

	6 The procedure applied
	6.1 The Triangle problem
	6.2 Aspect core functionality, output boolean
	6.3 Aspect core functionality, output triangle
	6.4 Aspect robustness and additional constraints

	7 Conclusions and future work
	References

