
Template Method Test Pattern

A. Bijlsmaa, H.J.M. Passiera,∗, H.J. Pootjesa, S. Stuurmana

aFaculty of Management, Science and Technology, Department of Computer Science, Open
Universiteit, Valkenburgerweg 177, Heerlen, The Netherlands

Abstract

How to test abstract classes is an area of testing that is not paid much attention

to. Abstract classes cannot be instantiated and therefore standard execution-

based test strategies are not applicable.

In this paper, we consider a special case of an abstract class, namely one

produced by the Template Method pattern. This pattern results in an abstract

class, with a concrete template method and one or more abstract primitive

operations, and one or more subclasses, implementing the primitive operations

specifically for each subclass.

How should we test an instance of the Template Method pattern? Testing

the concrete template method by testing the abstract class is impossible. Testing

an instance of the Template Method pattern by testing the template method in

all of the subclasses individually is error-prone in the long run.

This paper presents a structured approach to test instances of the Template

Method pattern in an elegant way using the Abstract Factory pattern. Fur-

thermore, we introduce the new concept semi-abstract method to reason about

concrete methods that depend on abstract operations. We formalize the pattern

and demonstrate the approach at work using an example program.

Keywords: Software testing, Software design and implementation, Abstract

classes, Template Method

2010 MSC: 00-01, 99-00

∗Corresponding author
Email address: harrie.passier@ou.nl (H.J.M. Passier)

Preprint submitted to Journal of LATEX Templates April 11, 2018



1. Introduction

The problem we consider in this article is that classes produced by the Tem-

plate Method Pattern [1] cannot be tested in a straightforward way. This pat-

tern is applicable if subclasses implement algorithms that contain similar steps

in the same order, while the steps themselves are different. Applying the Tem-5

plate Method moves the algorithm structure and identical steps to a superclass

and leaves the implementation of the different steps in the subclasses.

To illustrate the problem, we use a simple example throughout this paper.

Listing 1 shows the situation before applying the Template Method pattern.

Listing 1: Example program
10

public class A {

public String sayHello() {

return "Hello";

}

}15

public class B extends A {

public ArrayList<Integer> addSquares(ArrayList<Integer> base) {

ArrayList<Integer> res = new ArrayList<Integer>();

for (int val : base) {20

res.add(val ∗ val);

}

return res;

}

}25

public class C extends A {

public ArrayList<Integer> addPosVals(ArrayList<Integer> base) {

ArrayList<Integer> res = new ArrayList<Integer>();

for (int val : base) {30

if (val > 0) res.add(val);

}

2



return res;

}

}35

Superclass A has a method sayHello and has two subclasses B and C. Both

subclasses inherit method sayHello and both have their own method (addSquares

and addPosVals). The bodies of methods addSquares and addPosVals show similar

steps in the same order.40

Throughout this paper the word ‘testing’ refers to black-box testing, in other

words, checking that the result of all operations conforms to their specification,

regardless of implementation details.

Method addSquares of B returns an array containing the squares of the values

in base, whereas method addPosVals of C returns an array containing only the45

positive values of base. In functional programming terms, they are a map and

a filter, respectively. There exist several compact notations for such operations,

e.g. the Bird-Meertens formalism [2].

Testing these classes is simple. We implement three test classes: test class

ATest testing method sayHello, test class BTest testing method addSquares and50

test class CTest testing method addPosVals.

After application of the Template Method pattern, we get the program shown

in listing 2. Figure 1 shows the corresponding class structure.

Listing 2: Template Method pattern applied

public abstract class A {55

public ArrayList<Integer> process(ArrayList<Integer> base) {

ArrayList<Integer> res = new ArrayList<Integer>();

for (int val : base) {

use(res, val);

}60

return res;

}

protected abstract void use(ArrayList<Integer> list, int element);

3



65

public String sayHello() {

return "Hello";

}

}

70

public class B extends A {

public void use(ArrayList<Integer> list, int element) {

list.add(element ∗ element);

}

}75

public class C extends A {

public void use(ArrayList<Integer> list, int element) {

if (element > 0) list.add(element);

}

}80

A

+sayHello(): String

+process(ArrayList<Integer>: ArrayList<Integer>

#use(ArrayList<integer>, int)

B

+use(ArrayList<Integer>, int)

C

+use(ArrayList<Integer>, int)

Figure 1: The class structure after refactoring

The generic structure of the Template Method pattern consists of an abstract

4



class and one or more concrete subclasses [1, page 360]. The abstract class

(A in our example) defines a template method (process) that defines the skele-

ton of that algorithm. The template method makes use of other abstract85

operations(use) in order to run the algorithm. Concrete subclasses implement

these operations.

1.1. Problem

The question we consider is: ‘How to test an instance of the Template Method

pattern in an elegant and safe way?’.90

When we refactor to this pattern, as above, we should, in theory, create

tests for all new concrete methods [3]. In a Template Method pattern, this

is not possible: although the process method is concrete, its body refers to

abstract methods. Therefore, we cannot test the template method (process) by

unit testing its class (A).95

Remember that (here) testing means checking that the result conforms to its

specification. Method process has no fixed postcondition because its workings

depend on the choices of use, which are undetermined. If we would include

white-box properties, for instance a demand that process should call use on each

of the elements of base, these could be tested by means of an appropriate stub,100

but that is a different problem.

Testing an instance of the Template Method pattern by testing one subclass

is not enough, because the expected return value of process differs for each sub-

class. Concrete methods that depend on abstract methods should be tested by

testing all subclasses that implement these abstract methods individually [4].105

However, that is an undesirable approach: each time we add a subclass, we have

to remind ourselves to test this concrete method of superclass A too, which is

error-prone in the long run: because the template method in the abstract class

is concrete, it is easy to forget testing this method in subclasses.

1.2. Contributions110

First, we show how an instance of the Template Method pattern can be tested in

an elegant and safe way using the Abstract Factory pattern [1] resulting in what

5



we call a Three Parallel Architecture for Class Testing (3pact). Secondly, we

introduce the concept semi-abstract method to reason about concrete methods

depending on abstract operations. This concept helps in recognizing when the115

test pattern is applicable and in describing the structure of the class hierarchies.

6



2. The Template Method Test Pattern

The abstract class in the Template Method pattern implements a (concrete)

template method which uses some (abstract) primitive operations. Subclasses

implement these primitive operations to carry out subclass-specific steps. Given120

an object instance, the concrete template method calls the concrete primitive

operations of one specific subclass.

2.1. Semi-abstract method

To be able to reason about this situation, we introduce the concept of a semi-

abstract method: A semi-abstract method is a concrete method that depends,125

directly or indirectly, on one or more abstract operations, or calls a method of

an abstract class defined in a class hierarchy elsewhere.

The Template Method pattern uses a specific form of a semi-abstract method:

the concrete method in the abstract class depends on one or more abstract meth-

ods in the abstract class, which must be implemented in the concrete subclasses.130

In contrast, most occasions of semi-abstractedness in code will concern method

bodies that refer to an object through an interface or abstract class, because

objects should be known, preferably, by their interface or abstract class, and

not by their concrete class.

2.2. The test pattern135

Testing an instance of the Template Method pattern implies testing the template

method as well as instances of the abstract operations. Because the functionality

of the template method is determined by the specific subclass chosen, we have

to test all object instances individually.

Creating an object of a specific subclass can be straightforward (like in our140

example), but it might also involve creating other objects that should be given

as parameters to the constructor. It is undesirable, therefore, to have the test

class create these objects. That would be a responsibility that does not belong

to the test class.

7



We propose, therefore, to use the Abstract Factory pattern to create in-145

stances of the subclasses to be tested, and to create a hierarchy of test classes

mirroring the hierarchy of the classes forming the Template pattern, see Fig-

ure 2.

a1

ATest

+sayHelloTest()

#processTest()

BTest

+setUp()

+processTest()

AFactory

#getFactory(String): AFactory

+create(): A

BFactory

#getFactory(String): AFactory

+create(): A

A

+sayHello(): String

+process(ArrayList<integer>):

ArrayList<Integer>

#use(ArrayList<Integer>, int)

B

#use(ArrayList<Integer>, int)

Figure 2: The 3 Parallel Architecture of Class Testing (3pac)

Listing 3 shows the abstract factory. The abstract class AFactory declares an

abstract operation create which returns an instance of a concrete subclass part150

of the class hierarchy under class A. The abstract class AFactory also has a class

method getFactory that returns an object of class AFactory, based on a string

that is passed to it by the calling object. When this string is "B", this method

returns an object of class BFactory. Class AFactory defers the creation of objects

to one of its concrete factories, in this case BFactory. Each concrete factory155

redefines this create operation to create objects of the concrete class under test,

in our case objects of type A, of class B.

Listing 3: The factory hierachy

public abstract class AFactory {

8



static AFactory getFactory(String testClass) {160

AFactory factory = null;

//based on the value of testClass, determine adequate factory

return factory;

}

public abstract A create();165

}

public class BFactory extends AFactory{

public A create(){

return new B();170

}

}

The client of the factory (a test class) only knows the interface declared by the

abstract factory and the name of the class it should test. It receives a concrete175

factory, that it can use to call the operation create, to get an instance of the class

under test. In our example, creating an instance of the class under test would

be simple, but in many cases, creating such an object is more complicated:

often, the constructor should be called with parameters, and the values of these

parameters are sometimes objects that should be created as well. By using the180

Abstract Factory method, we relieve the test classes of the responsibility to

create these objects.

Class ATest (see listing 4) has an attribute a of type A. An instance of

the class under test is assigned to this attribute by calling method create of

the factory that is received by calling getFactory of class AFactory. Because185

method sayHello in class A is a concrete method, class ATest contains a concrete

test for it. Notice the abstract definition of method processTest; this enforces a

redefinition in all subclasses.

Class BTest extends abstract class ATest. In this class, we define a constant

TESTCLASS with the name of the class under test. This can be used in the call190

to getFactory, to receive a factory that will provide the right value for attribute

9



a. Method setup prepares the test data according to the specific functionality

of method use. Method processTest is redefined compulsory for doing the right

test.

Listing 4: The test class hierarchy
195

public abstract class ATest {

protected A a = null;

@Test

public void sayHelloTest() {200

String s = a.sayHello();

assertEquals("Hello", s);

}

public abstract void processTest();

}205

public class BTest extends ATest {

private ArrayList<Integer> testlist = new ArrayList<>();

private ArrayList<Integer> resultlist = new ArrayList<>();

static final String TESTCLASS = "B";210

public BTest() {

super();

a = AFactory.getFactory(TESTCLASS).create();

}215

@Before

public void setUp() throws Exception {

testlist.add(1); testlist.add(2); testlist.add(−3);

resultlist.add(1); resultlist.add(4); resultlist.add(9);220

}

@Test

public void processTest() {

assertEquals(resultlist, a.process(testlist));

10



}225

}

2.3. Discussion

Our pattern solves the problem that we have to remember to test the (concrete)

template method of the abstract class in the Template Method pattern (in our230

example process). We simply need a concrete subclass of ATest for each concrete

subclass of A. By delegating the responsibility to create objects of the classes

to be tested to an abstract factory, the test classes are not cluttered with the

creation of objects.

Thanks to the interface of class ATest, all tests can be run in a uniform235

way. Furthermore, by defining an abstract method processTest in class ATest we

enforce that each subclass defines its own test for the method process. Now, we

only have to remember to create a test class and a factory for each subclass

of A. Our pattern ensures that the concrete method process is tested in each

concrete subclass (thereby implicitly testing each use method).240

The architecture presented, forms a so-called Parallel Architecture of Class

Testing (pact) [5]. In our case, we even have three parallel hierarchies: the

test hierarchy, the factory hierarchy and the domain class hierarchy. We will

call our hierarchy a 3 Parallel Architecture of Class Testing (3pact). Notice

that a concrete method in abstract class A (in this case sayHello) is tested by245

a semi-abstract test method (in this case sayHelloTest) in class ATest. Method

sayHelloTest is semi-abstract because it depends on attribute a which value is

determined by the abstract method getFactory. A semi-abstract method in class

A (in this case, process) is tested by an abstract test method (in this case

processTest) in class ATest. In other words, the methods of the abstract class250

under test are tested by methods that are one step more abstract.

This pattern is not specific to the example, but can be applied to any abstract

class. A black-box unit test for an abstract class, should contain

• no test for an abstract method,

11



• an abstract test for a semi-abstract method,255

• a semi-abstract test for a concrete method.

One might consider the hierarchy in 3pact as overcomplicated. The code

could be simplified by merging the functionality of the factory classes into the

test classes resulting in a create method in each of the test classes. Although, this

simplifies the code in cases the factory classes are simple, it has two important260

drawbacks. First, it violates the oo principle ‘Separate the use of an object

from its creation’. Secondly, mixing responsibilities results in low cohesion and

as such increases the code’s complexity and decreases the code’s readability.

12



3. Related work

Testing abstract classes is not paid much attention to in the literature [4]. The265

inability to instantiate objects of an abstract class is mentioned as a reason,

thereby preventing them from being executed at runtime [4].

Clarke et al. [4] gives general advice about the minimal set of test cases

that should be used, for instance, that in the case of a concrete method that

references abstract methods, there should be a test case for each class that270

implements such an abstract method. No attention is given to how one ensures

that the right tests are developed.

Thuy [6] gives general, execution-based, approaches for testing the features

of an abstract class. However, these approaches are not suitable for testing an

instance of the Template Method pattern, because they pass over the fact that275

each concrete definition of a template method depends on the abstract class’

template method as well as the overridden primitive operations in each subclass.

Kong and Ying [5] describe a method for testing abstract classes. Their test-

ing approach makes use of the parallel architecture of class testing (pact) [7]

and uses a Factory Method design. They do not recognize the problem of con-280

crete methods that refer to abstract methods, but their approach is usable for

those instances. In their approach, test classes are responsible for the creation

of objects of the right class; in our approach, test classes are uncluttered. More-

over, the approach of Kong and Ying ignores the problem of concrete methods

that refer to abstract methods.285

13



4. Conclusions

Almost always, software is developed iteratively, using development methods

such as the Unified Process (up) [8] or eXtreme Programming (xp) [9]. An

important principle of practice of these methods is that code is refactored con-

tinuously [10]. As such, refactoring plays an important part in modern software290

development methods.

An essential precondition for refactoring code is to have solid tests in ad-

vance [11]. A unit test tests the external behavior of code, which should be

unchanged after a refactoring has been performed.

However, refactoring code can break the api and hence the unit test. This295

means that after a refactoring, the unit test may have to be refactored as well. If

the refactoring introduces a semi-abstract method, as is the case in the Template

Method pattern, the solution described in this article should be applied.

Moreover, the Template Method pattern is often used in frameworks. Every

application that uses such a framework can only be completely tested by taking300

into account the semi-abstract methods involved. Forcing subclass authors to

do so would require framework authors to publish their unit tests, incorporating

our pattern.

4.1. Future work

This pattern solves the problem that is caused by semi-abstractness within the305

Template Method pattern: in those cases in which a concrete method depends

on abstract methods that are implemented in subclasses. A similar problem

arises in semi-abstract methods where the body refers to abstract methods of

other classes (for instance, in the Strategy pattern or the Bridge pattern). De-

termining how (adaptations of) this pattern can be useful in those circumstances310

is subject of future research.

In theory, it is possible to automatically detect semi-abstractedness in the

form that we see in the Template pattern. Because the pattern that we described

has a specific form that can be partially constructed from the classes under

14



test, it should be possible to automatically generate test classes and factory315

classes. The developer should implement the setUp and processTest methods

of the concrete test subclasses, and the create method of the concrete factory

classes. Everything else could be generated automatically. Creating such a tool

is subject of future research.

15



References320

[1] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns: Elements of

Reusable Object-Oriented Software, Addison-Wesley Publishing Company,

Reading, MA, USA, 1995.

[2] J. Gibbons, An Introduction to the Bird-Meertens Formalism, in: S. Reeves

(Ed.), Proceedings of the First New Zealand Formal Program Development325

Colloquium, Hamilton, 1994, pp. 1–12.

[3] H. Passier, L. Bijlsma, C. Bockisch, Maintaining unit tests during refac-

toring, in: Proceedings of the 13th International Conference on Principles

and Practices of Programming on the Java Platform: Virtual Machines,

Languages, and Tools, PPPJ ’16, ACM, New York, NY, USA, 2016, pp.330

18:1–18:6. doi:10.1145/2972206.2972223.

URL http://doi.acm.org/10.1145/2972206.2972223

[4] P. J. Clarke, J. F. Power, D. Babich, T. M. King, A testing strategy for

abstract classes, Software Testing, Verification and Reliability 22 (3) (2012)

147–169. doi:10.1002/stvr.429.335

URL http://dx.doi.org/10.1002/stvr.429

[5] L. Kong, Z. Yin, The extension of the unit testing tool junit for special

testings, in: Proceedings of First International Multi-Symposium on Com-

puter and Computational Sciences, vol. 2, IMSCCS’06, IEEE Press, 2006,

pp. 410âĂŞ–415.340

[6] N. Thuy, Testability and unit tests in large object-oriented software, in:

Fifth International Software Quality Week, Software Research Institute,

1992, pp. 1–9.

[7] J. McGregor, D. Sykes, A Practical Guide to Testing Object-Oriented Soft-

ware, Addison-Wesley, 2001.345

16

http://doi.acm.org/10.1145/2972206.2972223
http://doi.acm.org/10.1145/2972206.2972223
http://doi.acm.org/10.1145/2972206.2972223
http://dx.doi.org/10.1145/2972206.2972223
http://doi.acm.org/10.1145/2972206.2972223
http://dx.doi.org/10.1002/stvr.429
http://dx.doi.org/10.1002/stvr.429
http://dx.doi.org/10.1002/stvr.429
http://dx.doi.org/10.1002/stvr.429
http://dx.doi.org/10.1002/stvr.429


[8] C. Larman, Applying UML and Patterns: An Introduction to Object-

Oriented Analysis and Design and Iterative Development (3rd Edition),

Prentice Hall PTR, Upper Saddle River, NJ, USA, 2009.

[9] K. Beck, Embracing change with extreme programming, Computer 32

(1999) 70–77. doi:doi.ieeecomputersociety.org/10.1109/2.796139.350

[10] I. Sommerville, Software Engineering, 9th Edition, Addison-Wesley, Har-

low, England, 2010.

[11] M. Fowler, S. Fraser, K. Beck, B. Caputo, T. Mackinnon, J. Newkirk,

C. Poole, Refactoring: Improving the Design of Existing Code, Addison-

Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1999.355

17

http://dx.doi.org/doi.ieeecomputersociety.org/10.1109/2.796139

	Introduction
	Problem
	Contributions

	The Template Method Test Pattern
	Semi-abstract method
	The test pattern
	Discussion

	Related work
	Conclusions
	Future work


