
1

Chapter

6RIWZDUH�$UFKLWHFWXUH�DQG�-DYD�%HDQV

Sylvia Stuurman
'HOIW�8QLYHUVLW\�RI�7HFKQRORJ\

Key words: Java Beans, Software Architecture, Component Based Development

Abstract: When thinking about it in theory, Software Architecture and Component-
Based Development make an ideal match: the concerns of Software
Architecture are high level design, interaction, and configuration of
components, while Component-Based Development is centered around the
implementation and specification of reusable components.

Together, these concerns seem to be the yin and yang for the development of
complex systems out of existing components. Several authors already
explained that in reality, there is a gap between the two areas.

In this paper, we investigate the relation between Java Beans and a software
architectures description: may Java Beans simply be used as ready-to-use
implementations of a software architecture? Which restrictions do they inflict
on the software architecture? Where are the mismatches?

��� ,1752'8&7,21

As has been argued many times, todays complex large-scale software
systems ask for a different kind of software engineering than small and
simple programs.

 On the one hand, there is a need for very high-level design. The level of
abstraction should be higher than that of objects, or procedures. Moreover,
such a design should be a model of the system-in-use, and not only a model

2 &KDSWHU

of the implementation (Allen and Garlan, 1994). Software architecture is an
answer for this need (we use ‘software architecture’ in the sense of the
definition of Garlan and Shaw (Garlan and Shaw, 1993): ‘Structural issues
include gross organisation and global control structure; protocols for
communication, synchronization, and data access; assignment of
functionality to design elements; physical distribution; composition of
design elements; scaling and performance; and selection among design
alternatives.’).

 On the other hand, there is a need for the reuse of components. The
ideal with this respect is, for a developer, to be able to shop among different
component-providers, and build a system in the same way as building a
vehicle out of Lego bricks and pieces. Several standards, both commercial
and non-commercial, for component models have arized, such as CORBA,
ActiveX, or Java Beans.

 Software architecture seems a natural complement for reusable
software components: existing component middleware technologies are
component-centric, they standardize external component properties.
Software architectures are system-centric, with more emphasis on the
connections, and the properties of the system as a whole.

One of the problems of building systems out of existing components is
the possibility of an ‘architectural mismatch’ between components (Garlan et
al., 1995). Components make implicit assumptions about the nature of the
components (infrastructure, control model, data model), the nature of the
connections (protocols and data model) and about the global architectural
structure (for instance about the presence or absence of particular
components or connections).

As part of a solution for this problem, it has been suggested (Garlan et
al., 1995) that these architectural assumptions could be made explicit using
an Architecture Description Language (or ADL). Architectural descriptions
could be used to understand the concepts embodied in component libraries
(Perry and Wolf, 1992).

 However, there are problems to overcome:
ADL’s are created for the specification of software architectures, and

software architectural styles. They have not been created with the component
standards like CORBA, ActiveX or Java Beans in mind. The two domains
use similar, but incompatible models of components and component
bindings, revealed when comparing the Interface Description Languages for
components, with the possibilities of the ADL used for software architecture.

��6RIWZDUH�$UFKLWHFWXUH�DQG�-DYD�%HDQV 3

Moreover, the mapping of components at the software architectural level
to components at the implementation level might be feasable, how other
architectural elements should be mapped is unclear.

Furthermore, an architecture describes the system as a whole, while
reusable components make use of services provided by the middleware
infrastructure and the operating system. In fact, these services should be
modeled at the architectural level, to get a real mapping between both levels
(Oreizy et al., 1998).

 Anothor question is KRZ software architecture and component-based
development can be combined:

One way of combining these domains is to start with the design of the
system’s architecture. The architecture should be refined until one is able to
choose or build existing components, based upon the architectural
specification. These components should be connected according to the
architecture. Designing the systems’s architecture is, in this case, the
specification; “filling in” the components, is the implementation. However,
when one first completes the software architecture without the components
at-hand in mind, the chance that one can really reuse them is very low. The
“inevitable intertwining of specification and implementation” (Swartout and
Balzer, 1982) is especially valid when reusable components are involved.

Another way of combining software architecture and component-based
development is to build a system using existing components, and describe
the architecture of such a system in an Architecture Description Language.
The description can be used for analysis.

 In this paper, we explore the possibilities of both ways of combining
component-based development and software architecture, for the component
model of Java Beans. On the one hand, we investigate how we can map a
software architecture onto an application of connected Java Beans. We use
the framework for classifying ADL’s by Medvidovic and Taylor
(Medvidovic and Taylor, 1997) to cover the different aspects which might or
should be included in an architectural description of a system. On the other
hand, we summarize the requirements for an ADL, usable to describe the
architecture of an application built by connecting beans.

 In section 2, we will give a short overview of the features and concepts
of Java Beans. In section 3, we discuss the (im)possibilities of mapping
architectural elements onto Java Beans. In section 4, we do the same the
other way around. Related work is mentioned in section 5, and in section 6,
we discuss how to carry on.

4 &KDSWHU

��� -9�%($16�,1�6+257

Java Beans are pieces of software, written in Java, in such a way that it is
possible to build applications by connecting beans, in a ‘bean-aware’
application builder. Such an application builder is able to get information of
the bean about its properties, methods, and the events it fires. The user of the
application builder may change properties, and connect different beans
through events, thus building an application. Everything is done through
dragging and dropping, or by filling in property sheets.

 In a bean’s lifetime, one may discern three different stages: in the first
place, a bean should be created. In this paper, we are not concerned with
beans programming, and we will just assume the existence of a library of
ready-to-use beans. In the second place, a bean is used during the design of
an application. The application builder tool discovers its properties, methods
and events, the user or developer instantiates the bean, customizes the
instances, and connects instances of (the same or different) beans. Of course,
a bean may be used multiple times, during the design of different
applications. The third stage is the existance (as an instance) in a running
application. With “design-time” we will refer to the second stage described
above; a bean in a running application is referred to with “run-time”.

 According to the Java Bean specification (Hamilton, 1997), a Java bean
is a reusable software component with at least:

• Support for introspection. Beans are constructed in such a way that
an application builder may discover a bean’s properties, methods,
and events by introspection.

• Support for properties, to be inspected or changed: customization.
Properties are a bean’s appearance and behavior attributes that can be
changed at design time.

• Support for events, for communication between beans. A bean that
wants to receive events (a listener bean) registers its interest with the
bean that fires the event (a source bean). Builder tools can examine a
bean and determine which events that bean can fire (send) and which
it can handle (receive).

• Support for persistance. Persistence enables beans to save their state,
and restore that state later.

 A bean interacts with its environment through its set of properties, its
set of methods, and the set of events it fires. Properties are attributes that can
be read and written. Methods are normal Java methods that can be called
from outside the bean. Events that are fired by beans invoke methods in

��6RIWZDUH�$UFKLWHFWXUH�DQG�-DYD�%HDQV 5

beans that have subscribed on the particular class of events. These beans
adhere to the EventListener interface. An event-firing bean and an
EventListener bean may be decoupled by placing an EventAdapter bean
inbetween them.

Some properties of event delivery for Java Beans are:
• Event delivery is multicast: one event that is fired, invokes an

associated method in every bean that has subscribed on the event.
• Event delivery is synchronous with respect to the event source: the

associated method in the EventListener bean is executed in the thread
of the event-firing bean.

• The set of EventListeners for a certain event may be changed
dynamically.

���� ([DPSOH

������ &RQQHFWLRQV�ZLWK�(YHQWV

Imagine a BallThrowing Bean. Throwing a ball is implemented using an
event, for which a BallEventObject class is created.

When one uses such a Bean in a bean-aware application builder, one may
instantiate instances of the BallThrowing bean, and connect them through
the BallEvent. A bean (a BallThrowing bean or any other bean that can
handle BallEvents) is connected by stating that the bean listens to the
BallEvents sent by the BallThrowing bean, and by specifying which action
should be performed when receiving a BallEvent.

A BallThrowing bean class should have a list of BallEventListeners, and
methods to add and remove objects to and from that list. These methods are
used in the application-buolder, when connections are made and undone.

A BallEventListener bean should have an action method which has a
BallEventObject as an argument.

public class BallThrower {
private Vector ballCatchers = new vector();

public synchronized void addBallEventListener(BallEventListener c) {
ballCatchers.addElement(c);

}

public synchronized void removeBallEventListener(BallEventListener c)
{

6 &KDSWHU

ballCatchers.removeElement(c);
}

}

public interface BallEventListener {
void catchBall(BallEventObject ball);

}

public class BallEventObject extends EventObject {
}

������ 3URSHUWLHV

A bean-aware application builder simply searches for set- and get-
methods to find the properties of a bean. The BallThrower bean for instance,
could have the number of balls it posseses, as a property:

public void setNumber(Integer number) {
this.number = number;

}

public Integer getNumber() {
return number;

}

Changes to properties may be notificated to other beans. Such a property
is called ERXQGHG. A bean with a bounded property maintains a list of
PropertyChangeListeners (beans implementing the PropertyCangeListener
interface), and it sends a PropertyChangeEvent to those listeneres when the
bounded property has been changed.

A property may be FRQVWUDLQHG as well. In this case, the bean maintains a
list of VetoableChangeListeners, which are able to check whether a value of
the constrained property is within the constraints. The setProperty method of
such a bean raises an exception when one of the listeners uses his veto.

A bean-aware application builder recognizes that a property is bounded
or constrained, and offers the user of the application-builder the possibility
to indicate which other beans will act as listeners.

��6RIWZDUH�$UFKLWHFWXUH�DQG�-DYD�%HDQV 7

������ ,QWURVSHFWLRQ

In the samples of a bean shown above, we have used conventional names
and type signatures of methods and interfaces, as a means for introspection.
Beans-aware application builder look for set- and get-methods, and
addeventlisteners and removeeventlisteners methods, to find the properties
of a bean and the events with which it can be connected.

A Java Bean may also explicitly specify its properties, events and
methods, using a class implementing the BeanInfo class.

���� 6WDWXV�DQG�(QYLURQPHQW

 Because communication between beans consists of event notification
and direct method invocation, it is necessary that beans run in the same
address space, in this case in the same Java Virtual Machine.

Another environmental aspect of beans is that they should assume that
they are running in a multithreaded environment: several different threads
may simultaneously deliver events, or call methods directly.

 Several extensions have been proposed:
• InfoBus (Colan, 1998) from Lotus Development is already available.

This extension offers a new type of connection between beans: data
flows. Beans may subscribe on certain kind of data (based on a
name). Other beans produce data. Application builder tools are able
to extract from a bean the names of the data it is able to produce.
This communication mechanism is known as subscription-based
communication (Boasson, 1996). This type of connection is attractive
with respect to the introduction of on-line changes (Stuurman and
van Katwijk, 1998).

• JavaSpaces (Sun, 1998) is available as a beta version at this moment.
JavaSpaces provides a distributed persistence and object exchange
mechanism. It is comparable with InfoBus, for communication
between beans in different Java Virtual Machines.

• An extensible runtime containment and services protocol has been
proposed (Cable, 1998). This protocol supports extensible
mechanisms that introduce an abstraction for the environment of a
bean, enable the dynamic addition of arbitrary services to a bean’s
environment, provide a mechanism through which a bean may
interrogate its environment, and provide a mechanism to propagate

8 &KDSWHU

an environment to a bean. In short, the notion of the context of a bean
is introduced in this extension.

• Another extension is the Java Beans Activation Framework (Calder
and Shannon, 1998). This framework supplies the services of
determining the type of arbitrary data, encapsulating access to data,
discovering the available operations on a particular type of data, and
instantiating a software component that corresponds to the desired
operation.

��� 86,1*�%($16�72�,03/(0(17�$1
$5&+,7(&785(

The idea of using beans to implement a given software architecture looks
promising and desirable: beans are components in the architectural sense:
loci of computation and data storage; one has the multi-platform benefits of
the Java language; there is a possibility to have a visual image of the
application, consisting of connected components as a mirror of the software
architecture it implements. The idea would be to look for (or build) beans
that match the specification of the components of the given architecture, and
connect them according to the given configuration.

 Which aspects of an architecture are specified depends on the ADL
which is used. We will not adhere to one specific ADL, but check the
aspects used in the classification framework for ADL’s by (Medvidovic and
Taylor, 1997). These aspects are: interface, types, semantics, constraints and
evolution of components and connections; compositionality, heterogeneity,
constraints, refinement, scalability, evolution and dynamism of
configurations.

When examining the possibility of a mapping between Java Beans and an
ADL, we will mainly look at those aspects that are specific to Benas (as
opposed to the general aspects of the Java language). Thos aspects are the
most interesting, because they have been specified for the convenience of
tool-builders. Next to bean-aware application builders, one may just as easily
construct bean-aware software architecture tools.

��6RIWZDUH�$UFKLWHFWXUH�DQG�-DYD�%HDQV 9

���� &RPSRQHQWV

The interface of a component in the software architectural sense is the
set of interaction points between the component and the external world. An
interface specifies the services a component provides, and it might specify
the needs of a component. The interface of a Java Bean is its set of
properties, its methods, and the events it fires. This information may be
extracted from a bean at design-time, so one may use an application builder
tool to expose the interface. Mapping the interface of a component, specified
in an ADL, to the interface of a Java Bean seems rather straightforward,
though, of course, not every aspect of an interface that one can specify in an
ADL has a counterpart in Java Beans.

ADL’s may model abstract components as types, and instantiate them
multiple times. Some ADL’s allow abstract component types to be
parameterized. A Java Bean may be regarded as a parameterized component
type as far as it can be customized. A bean may be instantiated as often as
one needs. So, parameterized types are directly supported by Java Beans. On
the other hand, not every imaginable component type can be implemented
using a Java Bean.

A software architecture specification may contain a model of the
component semantics. In a Java Bean however, semantics are not exposed.
When using beans in an application builder, the user is obliged to rely on the
documentation, supplied with the beans.

An ADL may specify constraints on the abstract state of a component,
the implementation, or non-functional properties. With respect to the abstract
state of a component: Java Beans have the notion of constrained properties.
When such a property is changed, another bean validates the change. A
mapping between constraints on the abstract state of a component and
constrained properties of a bean seems possible.

ADL’s may support design evolution through subtyping and refinement.
A mapping between such a support and an implementation using Java Beans
might be useful for prototyping. However, subtyping and refinement of Java
Beans in an application builder is not supported.

In tabel one, we summarized which aspects of components, described in
an ADL, may be mapped to those aspects of Java Beans that are visible for
bean-aware tools.

7DEOH��� Mapping Components in a Software Architecture Description to Java Beans

ASPECT MAPPING

interface Possible, beans support a subset

10 &KDSWHU

types Possible, beans support a subset

semantics Not possible

constraints Possible, beans support a small subset

evolution Not possible

���� &RQQHFWLRQV

In an application builder using Java Beans, one glues beans together by
connecting them using event notification. An event of an event-firing bean is
associated with a method of an event-listening bean. A special case is the
notion of constrained properties. A bean with constrained properties is
associated with a validator bean. Each time (at run-time) that a property is
changed, the change is validated.

 InfoBus and JavaSpaces extend this type of connection with the
possibility of asynchronous, anonymous data communication. Beans may
produce data, and may subscribe to certain kind of data. Producers don’t
have to wait until every consumer has seen the produced data. Producers and
consumers are unaware of each other.

 Other kind of connections (create connections for instance) are
possible, but cannot be made visible in an application builder, and are
‘hidden’ in the code of the bean.

The interface of a connection in a software architecture is a set of
interaction points between the connection and the components attached to it.
Each kind of connection that can be used for Java Beans has its own
interface: events are of a certain class and should be connected to an
eventsource and a set of eventlisteners; InfoBus connections are associated
with a name and should be connected to a set of data producers and a set of
data consumers. Of course, not every interface that one can specify in an
architecture has a counterpart in a Java Beans application.

Some ADL’s distinguish connection types from connection instances.
Events in Java Beans are always of a certain class, that can be subclassed.
So, for event-based connections, one may map the idea of a connection type
to an event connection.

Some ADL’s provide means to express the semantics of connections. For
the connections possible in a Java Beans application, one should specify the

��6RIWZDUH�$UFKLWHFWXUH�DQG�-DYD�%HDQV 11

semantics of these connections once. Of course, in an architecture, one can
specify connections with semantics that have no counterpart in a Java Beans
application.

Connection constraints may consist of adherence to interaction protocols,
intra-connection dependencies, or usage boundaries. In general, Java Beans
give no support to translate these kind of constraints.

Some ADL’s provide support for connection evolution, through
subtyping or refinement. Again, Java Beans give no support.

7DEOH��� Mapping Connections in a Software Architecture Description to Java Beans

ASPECT MAPPING

interface Possible, beans support a subset

types Possible, beans support a subset

semantics Not possible (one should first specify beans connections)

constraints Not possible

evolution Not possible

���� &RQILJXUDWLRQV

Compositionality: some ADL’s support situations where an architecture
becomes a component in a bigger architecture. Such a composition can be
mirrored in Java Beans, where a composition of interconnected beans may
be transformed into one new bean.

Many ADL’s have the possibility to specify global constraints. In
general, it will not be possible to map these constraints to visible properties
of a Java Beans application.

Darwin, Rapide and C2 allow specification of dynamism in architectures.
Insertion and removal of both components and connections is possible in
Java applications, but one cannot extract information about this behaviour by
introspection.

7DEOH��� Mapping Configurations in a Software Architecture Description to Java Beans

ASPECT MAPPING

composition Possible

12 &KDSWHU

constraints Not possible

evolution Not possible

��� 86,1*��$1�$'/�72�'(6&5,%(�$�%($16
&21),*85$7,21

The previous section showed that not every software architecture can be
mapped onto a configuration of Java Beans. Not every part of an architecture
description is translatable into either a Java Bean, or a connection between
beans. When using beans to construct a system based on a certain software
architecture, one should check the types of components and the types of
connections.

Automating such a process is only attractive when one conforms to the
subset of architectures that can be implemented using beans.

 On the other hand, it seems to be the case that an application built by
connecting Java Beans, may be translated relatively easily into an
architectural description. One should choose an ADL based on how much of
the information, available in a beans application, can be described. In the
remainder of the section, we make use of the classification of (Medvidovic
and Taylor, 1997), for ADL’s, and we take only those ADL’s into account
that are part of the survey : Aesop, MetaH, LILEANNA, ArTek, C2, Rapide,
Wright, UniCon, Darwin, SADL and ACME.

���� %HDQV

The properties, methods and the events a bean can fire, should be
translated into an interface specification. All ADL’s support specification of
component interfaces.

The language should provide the means to specify parameterized types,
with the properties that can be changed at design time as parameters. Only
ACME, Darwin and Rapide make explicit use of parameterization.

Bounded properties may be translated into constraints on the abstract
state of a component. Rapide uses an algebraic language to specify
constraints on the abstract state of a component.

��6RIWZDUH�$UFKLWHFWXUH�DQG�-DYD�%HDQV 13

7DEOH��� Mapping Aspects of Beans to an ADL

ADL INTERFACE
SPECIFICATION

PROPERTIES AS
PARAMETER

BOUNDED
PROPERTIES

Aesop yes no no
MetaH yes no no
LILEANNA yes no no
ArTek yes no no
C2 yes no no
Rapide yes yes yes
Wright yes no no
UniCon yes no no
Darwin yes yes no
SADL yes no no
ACME yes yes no

���� &RQQHFWLRQV

Connections between an event source and an event listener should be
translated into a specification of a connection with the appropriate interface.
The same applies for the dataflow connections of the InfoBus and
JavaSpaces extension. This is possible in all of the surveyed ADL’s.

The semantics for the Java Beans style event-based and dataflow
connections should be expressed in the ADL. It should be possible to express
other kind of connections too, when future extensions introduce new types of
connections. Rapide, Wright and UniCon support such specifications.

7DEOH��� Mapping Aspects of Connections of Beans to an ADL

ADL EVENTS DATAFLOW SEMANTICS
Aesop yes yes no
MetaH yes yes no
LILEANNA yes yes no
ArTek yes yes no
C2 yes yes no
Rapide yes yes yes
Wright yes yes yes
UniCon yes yes yes
Darwin yes yes no
SADL yes yes no
ACME yes yes no

14 &KDSWHU

���� &RQILJXUDWLRQV

Since it is possible to compose beans into one bigger bean, an ADL used
to describe a bean-based application should support such kind of
composition. Most ADL’s do support it.

Because Java Beans is still developing, and more extensions are to be
expected, an ADL should allow for such extensions.

7DEOH��� Mapping Aspects of Configurations of Benas to an ADL

ADL COMPOSITION
Aesop no
MetaH yes
LILEANNA no
ArTek no
C2 yes
Rapide yes
Wright yes
UniCon yes
Darwin yes
SADL yes
ACME yes

���� ,PSOLFLW�$VSHFWV

Above, we inventarized the possibilities of different ADL’s to describe
those aspects of Java Bean-based applications that are visible for ‘bean-
aware’ tools. However, some implicit aspects of Java Beans should be
described too, when distilling the architecture of an application. To name a
few:

Threads. Every Java Bean may run in its own thread. At the same time,
its methods may be called by other beans, and executed in the thread of the
caller. A software architecture description of a beans application should
specify this aspect, though it is not available through introspection.

Create-connections. A bean may instantiate other beans at run-time. Such
a connection should certainly be described, but again, information about
these relationships is not available through introspection.

Run-time change of the configuration. Apart from the possibility to
create new instances of beans at run-time, beans are also able to change the

��6RIWZDUH�$UFKLWHFWXUH�DQG�-DYD�%HDQV 15

connections at run-time. This will especially be seen very often in
applications based on the Activation Framework extension. At this moment,
information about these possibilities is not available for application builder
tools. However, because the run-time flexibility of the Java system is one of
its advantages, an ADL for the description of beans applications should
preferably support the specification of dynamism in the configuration. These
ADL’s are Darwin, Rapide and C2.

7DEOH��� Mapping Implicit Aspects of Beans to an ADL

ADL RUN-TIME
CHANGE

Aesop no
MetaH no
LILEANNA no
ArTek no
C2 yes
Rapide yes
Wright no
UniCon no
Darwin yes
SADL no
ACME no

��� 5(/$7('�:25.

Reuse of Off-The-Shelf components in combination with the C2 style has
been explored in (Medvidovic et al., 1997). They constructed a Class
Framework of reusable classes that can be used to implement C2 style
architectures, and integrated several OTS components with the C2 style.
This integration was done by wrapping OTS objects in C2 components, and
mapping events into C2 messages and vice-versa. In this work, the C2 style
is the point of departure, and reusable components are adapted in such a way
that they can be used to implement C2 style architectures.

 A tool to detect architectural mismatches during design has been
constructed by Abd-Allah (Abd-Allah, 1996). His method is based on the
notion of ‘conceptual features’, which can be used to detect architectural
mismatches. The goal of this work is to enhance the possibilities of reusing

16 &KDSWHU

components, by scanning them on assumptions with respect to these
features.

��� ',6&866,21

In this paper, we have made a start with combining Java Beans and
software architecture.

���� &RPELQLQJ�6RIWZDUH�$UFKLWHFWXUH�DQG�%HDQV

As we have seen, it is highly improbable that a certain software
architecture can be mapped to an application built by connecting existing
beans, unless the designer of the architecture has taken such an
implementation into account. A more feasable approach to combine beans
and software architecture is to build a system using beans, and describe the
system’s architecture using an ADL. In that case, by choosing beans as
components, one restricts oneself to a certain subset of architectural
elements.

 However, as we have seen, not all the necessary information to describe
an architecture can be extracted from beans and their connections. Certain
aspects are implicit, and can only been revealed by inspecting the code of the
beans in use. Automating such a process is only feasable when beans adhere
to standard conventions for the implementation of these aspects. In fact, this
would be an extension to the Java Beans specification.

 One can imagine an intermediate approach: using beans, especially
developed for this purpose, to construct the system’s architecture, and
implement the system using beans that are specialized versions of the
“design” beans. Such an approach would benefit of an extension where one
can classify beans as being a specialization of another bean.

 Neither of these approaches comes for free: we have to extend the
standard for Java Beans to achieve a tight relationship between the software
architecture description of a system, and its implementation using beans. On
the other hand, the Java Beans specification already offers substantial
support for extracting an architectural description: the property of
introspection, meant for application builder tools, can be used for a
translation into an ADL of the exposed features of a bean.

��6RIWZDUH�$UFKLWHFWXUH�DQG�-DYD�%HDQV 17

���� 'HVLJQ�IRU�&KDQJH

An attractive property of both approaches is that changes in the software
are automatically handled at the architectural level. On-line change
capabilities are needed in several domains (see for instance (Stankovic,
1996)), and the ideal situation would be that such changes can be applied at
the architectural level.

Prerequisites for a system with on-line change capacities at the
architectural level are:
• The software architecture is reflected in the executable. Parts of the

executable from which components can be instantiated are traceable and
replaceable.

• Components may be added, deleted or replaced, at execution time.
• Bindings of components through connections occur dynamically. In

other words, connections may be added, deleted or replaced at execution
time.

• Instantiation of components and connections is possible from outside the
system.

• The functionality of components is not directly dependent on other
components.

• It is possible to analyze properties of the system at the architectural
level. Before a change is applied, the architecture should be analyzed to
guarantee that the changed system will meet the changed requirements.

Obviously, using a method based on the combination of a software
architecture description and a Java Beans application, it is relatively easy to
build systems with on-line change capacities on the architectural level.

��� 5()(5(1&(6

Abd-Allah, A. (1996) Composing Heterogeneous Software Architectures, PhD
Dissertation, Center for Software Engineering, University of Southern
California. http://sunset.usc.edu/~aabdalla/aaadef.ps.

Allen, R. and Garlan, D. (1994) Beyond Definition/Use: Architectural
Interconnection, in Proceedings of the Workshop on Interface Definition
Languages, Portland, Oregon, January.

Boasson, M. (1996) Subscription as a Model for the Architecture of Embedded
Systems, in Proceedings of the 2nd IEEE Conference on Engineering of Complex
Computer Systems, Montreal, Canada.

18 &KDSWHU

Cable, L. (1998) A Draft Proposal to define an Extensible Runtime Containment and
Services Protocol for JavaBeans (Version 0.98). Sun Microsystems.

Calder, B. and Shannon, B. (1998) JavaBeans Activation Framework Specification
(Version 1.0). Sun Microsystems.

Colan, M. (1998) InfoBus 1.1 Specification. Sun Microsystems.
Garlan, D. and Allen, R. and Ockerbloom, J. (1995) Architectural Mismatch or Why

it’s hard to build systems out of existing parts, in Proceedings of the
International Conference on Software Engineering, Seattle, April.

Garlan, D. and Shaw, M. (1993) An Introduction to Software Architecture, in
Advances in Software Engineering and Knowledge Engineering, volume 1 (ed.
V. Ambriola and G. Tortora), World Scientific Publishing Company, New
Yersey.

Hamilton, G. (Editor) (1997) JavaBeans 1.01 API Specification. Sun Microsystems.
Medvidovic, M. and Oreizy, P. and Taylor, R.N. (1997) Reuse of Off-The-Shelf

Components in C2-Style Architectures, in Proceedings of the 1997 Symposium
on Software Reusability , Boston, pp 190-198.

Medvidovic, M. and Taylor, R.N. (1997) A Framework for Classifying and
Comparing Architecture Secription Languages, in Proceedings of the 6th

European Software Engineering Conference, Lecture Notes in Computer
Science, 1301, 60-76.

Oreizy, P. and Medvidovic, N. and Taylor, R.N. and Rosenblum, D.S. (1998)
Software Architecture and Component Technologies: Bridging the Gap, in
Proceedings of the OMG-DARPA Workshop on Compositional Software
Architectures, Montery, CA, January 6-8.

Perry, D.E. and Wolf, A.L. (1992) Foundations for the Study of Software
Architecture. ACM SIGSOFT Software Engineering Notes, vol 17, nr 4, 40-52.

Shaw, M. and DeLine, R. and Klein, D.V. and Ross, Th.L. and Young, D.M. and
Zelesnik, G. (1995) Abstractions for Software Architecture and Tools to
Support them. IEEE Transactions on Software Engineering, April, 314-335.

Stankovic, J.A. (1996) Real-time and Embedded Systems. Group Report of the
Real-Time Working Group of the IEEE Technical Committee on Real-Time
Systems. http://www-ccs.cs.umass.edu/sdcr/rt.ps

Stuurman, S. and van Katwijk, J. (1998) On-line Change Mechanisms, the Software
Architectural Level, to appear in Proceedings of the the 6th International
Symposium on the Foundations of Software Engineering, Orlando.

Sun Microsystems Inc. (1998) JavaSpaces Specification, Revision 1.0 Beta.
http://www.javasoft.com/products/jini/specs/javaspaces.pdf

Swartout, W. and Balzer, R. (1982) On the Inevitable Intertwining of Specification
and Implementation. Communications of the ACM, vol 25, nr 7, 438-440.

%,2*5$3+<

Sylvia Stuurman is a researcher at the Software Engineering Group of the Department of
Technical Mathematics and Informatics of the Delft University of Technology, the

��6RIWZDUH�$UFKLWHFWXUH�DQG�-DYD�%HDQV 19

Netherlands. She finished her study in 1996. Before 1996, she worked as a scientific
programmer at the same department.

