
Experiences with Teaching Design Patterns
 Sylvia Stuurman Gert Florijn
 Open University SERC

 Heerlen Utrecht

 the Netherlands the Netherlands

 +31 45 5762177 +31 30 2308966

 Sylvia.Stuurman@ou.nl gflorijn@serc.nl

ABSTRACT
In this paper, we present an assignment for a course on Design
patterns at the masters level, where students have to adapt an
existing program to meet additional requirements. We describe
the basic program, discuss the reasons why we decided for such
an assignment, and show the results.

The assignment proved to be very effective both to train students
to work with design patterns and to assess that students have
reached the learning goals. This was true both for students with a
professional background and for students with academic interests.

Categories and Subject Descriptors

K.3.1 [Computers and education]: Computer uses in education –
Distance learning. K.3.2 [Computers and education]: Computer
and information science education – Computer science education.
D.3.3 [Programming languages]: Language constructs and
features – Patterns. D.2.7 [Software engineering]: Distribution,
Maintenance, and Enhancement – Restructuring, reverse
engineering, and reengineering. D.1.5 [Programming
techniques]: Object-oriented programming.

General Terms: Design, Experimentation.

Keywords: Design patterns, distance learning

1. INTRODUCTION
The courses of the Open University in the Netherlands are meant
to be studied at home, without extensive help from teachers.
Especially during the courses at the masters level, we expect
students to be able to study independently.
One such a masters-level course focuses on Design patterns. The
average student should be able to finish this course within 100
hours. Students are supposed to have a broad knowledge of and
experience with Java, to have experience with object-oriented
design using UML, and to be able to work with an IDE such as
JBuilder and a UML tool such as Together.

Our goal with this course is twofold: on the one hand, we offer a
course for students who follow the masters program of Technical
Informatics. On the other hand, Open University students often
have a job in the field of their study, so their interest is
professional as well in many cases. Therefore, the course should
be suitable for software designers who want to gain insight and
become better designers: the course should offer professionals
usable knowledge and experience.
The course is based on the book Design patterns explained [8].
Students read this textbook using a accompanying workbook [9]
with exercises, background information and explanations.
Furthermore, students get the “classic” book on Design patterns of
Gamma et al [5] on cd.
In designing the course, we used several principles and had to
meet several challenges.
First, while designing the course and writing the workbook, we
held the principle that design patterns are not only learned by
reading about them and drawing class diagrams, but by
implementing them as well, as is argued in for instance [2].
Our claim is that this principle of learning by using design
patterns helps the academic student to gain insight in the how and
why of design patterns, and helps the professional to learn to use
them instead of only knowing that they exist. We implemented
this principle by providing design- and implementation exercises
throughout the workbook.
In [6], Goldfedder and Rising observed that exposure to a variety
of systems was more critical for being able to learn to use design
patterns than the number of years of experience. Therefore, we
tried to pick the examples and exercises from varying domains.
However, this is not enough for both academic students and
professionals. Apart from learning individual patterns and the
principle behind them, they should learn how to understand and
apply patterns they have not seen before, how to integrate
different patterns, and how to use this knowledge in real-life
situations.
Furthermore, design patterns are not learned by reading and doing
small exercises. In small exercises, the task of discerning which
problems are present and which patterns could help to solve these
problems is a trivial one because of the size of the exercise.
Students should train such a competence by working with a fairly
large computer program. The same applies to the ability to
combine patterns: this is a trivial task in small exercises, and can
only be trained truly using a larger program.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ITICSE’04, June 28–30, 2004, Leeds, United Kingdom.
Copyright 2004 ACM 1-58113-836-9/04/0006…$5.00.

151

Another problem with designing the right exercises stems from
the fact that teaching design patterns means teaching advanced
object-oriented design. Design can only be learned by thinking
about alternatives, and the advantages and disadvantages of these
alternatives. This is a difficult task for a student studying at home:
a classroom where one can discuss matters with teachers or other
students is a much easier environment to train this competence.
In the following section, we describe the general idea of the
assignment that we use, which forms a solution for the problems
sketched above. In section 3, we describe some details of the
program that we use as a base for the assignment. Details about
the procedure of the assignment are given in section 4. In section
5, we summarize the observations we made. Section 6 contains
some remarks about related work, while we give conclusions in
section 7 .

2. THE ASSIGNMENTS
The key decision for our course was that the final assignment
should consist of a design, an implementation and a report
documenting the solution and especially the rationale as to why
and how certain patterns were used. In this assignment, students
have to change an existing program to meet new requirements,
using design patterns. This means that students can work on a
larger program than when they would have to work from scratch.
Several sets of new requirements, called scenario’s, were defined.
The students do their assignments at home, like the rest of their
study, but in order to force students to think and talk about
different solutions, we require them to work in teams of two
students.
We don’t let the students plunge into the deep at once: before they
start at their final assignment they have worked out two design
assignments, both bigger than the exercises in the workbook. In
the first assignment, they are told to try to use a fixed set of
design patterns; in the second assignment, they have to decide for
themselves which patterns are useful and why. The second
assignment is done in teams; they tackle the scenario for the final
assignment in the same teams.
We kept to the principle of gradual exposure to complexity, as
described in [3]: students start by doing small exercises from the
workbook, thus working at the level of knowledge,
comprehension and application. After having finished the first
half of the text- and workbook, they do a design exercise using a
limited set of patterns, at the level of application and analysis.
The next big assignment is again a design problem, this time
without a fixed set of patterns, at the level of analysis and
synthesis. Finally, the students do their final assignment at the
level of synthesis and evaluation, and showing that they are able
to find and use patterns not treated during the course.

3. THE PROGRAM: JABBERPOINT
The starting point for the final assignment is an existing program,
inspired by a program written by Ian Darwin: Jabberpoint [4].
Jabberpoint is a slides presentation program written in Java.
When we started thinking about a suitable application for the
course, we had a few goals. Ideally, we wanted to use an existing,
“real-world” application instead of a toy program. Furthermore, it
would have to be an application that students recognize easily,
without having to spend time learning domain details. Likewise,

the application should make it easy to think of functional
enhancements that could be implemented using patterns. Finally,
the program should be small enough to understand it in a couple
of hours and should be written in Java.
These requirements led us to the idea of using a presentation
program for the course. A search on the Internet brought us to
Jabberpoint. Jabberpoint was created by Ian Darwin, partially as a
case study for the Java courses he gave. Basically, the program
reads an input file (typically an XML file) containing the data
about a presentation, and then displays the presentation in a
window with keyboard and menu controls to nagivate the
presentation.

Figure 1. Jabberpoint showing a slide

The core concept in Jabberpoint is a presentation. A presentation
consists of a sequence of slides, each of which is built up of
slideItems. Various types of slideitems were already available,
ranging from text to images. Within each slide, the items have a
level associated with them, indicating the indentation and (font)
style properties that should be used in displaying the items.
The display of a presentation is handled in a user interface class
that extends javax.swing.JComponent. It links to the presentation
and keeps track of the current slide in the presentation using the
Observer pattern. It retrieves items from the current slide,
determines the position for each of them and delegates the actual
drawing of the items to the objects of the concrete slide-item
classes. The user-interface is setup fairly implicitly, using a few
controllers (for keyboard and menu) to navigate across the
presentation and load another one.
For the loading and saving of presentations, Jabberpoint contains
several accessors. Formats supported include XML, HTML and
plain text.
Jabberpoint met most of the goals we defined at the outset. It’s
both small and big enough, it’s written in Java and it provides
basic functionality that most of the students will understand.
Furthermore, even occasional usage of a presentation program
suggests several functional enhancements.
In order to make Jabberpoint usable as the basis for our
assignment, several changes were needed. While considering
exercises and (pattern-based) solutions for them, we refactored
and simplified the code in some areas. For instance, some classes

152

were renamed (such as Presentation instead of Model, Slide
instead of M), interfaces were introduced, the accessors were
simplified, and the Observer pattern that was already contained in
the original code, was written out of it. The task of bringing the
Observer pattern back into the program was turned into an
introductory exercise for students as a way to get to know the ins
and outs of the program.

4. THE SCENARIO’S
Teams each receive a scenario. Examples of these scenarios are:

• The program should get the possibility to save a presentation
in HTML.

• The program should be able to show two extra views on the
slides, such as a slidesorter, slides with notes, an outline, or a
next slide previewer (a small window showing the next slide).

• It should be possible to have hyperlinks on slides, combined
with one or more actions, such as playing a sound, go to the
next or previous slide, go to slide number x, open a new
presentation, etc.

• While showing a slide, it must be possible to draw on a slide.
These drawings should persist while the presentation is held,
but should not be permanently saved.

• Instead of showing all elements of a slide at once, it should
be possible to show only the elements of a certain level, or to
show them one at a time.

• It should be possible to define more than one presentation
using one set of slides. The order of the slides may change,
slides may be left out, or may be used more than once.

It’s easy to think of more scenarios, so it is possible to have
students work at a fresh set of scenarios in the future.
The procedure for the assignment is that teams first develop a
design and send it to their teacher, who comments on the design.
Then the teams make their final design, implement it and make up
a report, explaining what they changed, which design patterns
they used, which alternatives they considered and why they
decided to choose for the solution they present.
Teams are asked to describe which work was done by each of the
students, and they have to agree on that description. The first 18
students held a presentation about their solution, but we dropped
that requirement because of the amount of time it costs the
students.

5. OBSERVATIONS
At this moment, 38 students have finished the course. The first 18
students who took the course, were asked to fill in evaluation
forms. We also had a meeting with these students, where the
teams held a presentation about their solution, and where they told
us what they liked and disliked about the course.

5.1 Time spent
The first observation concerns the amount of time students
needed. The idea was to use 28 of the 100 hours for the final
assignment. One of the 18 students needed fewer hours (12); the
rest needed far more than those 28 hours, with a maximum of 75
hours. The average time needed was 38 hours.

When asked about it, the common answer was that they
deliberately spent more time than needed because they became
hooked. They tried (and implemented) several solutions to
compare, just for the fun of it. The general opinion was that the
assignment could be done in about 28 hours, under the conditions
that the program would be introduced earlier in the course and
students would already be familiar with it, and that the
presentation would be dropped.

5.2 Working in a team
A second observation is that students preferred working in a team
for this course, as opposed to working individually. This is a
remarkable fact, because Open University students in general
dislike working in teams (or at least say they do), because of
practical problems.
Two students worked individually for different reasons; all other
students worked in a team. Students discussed several solutions
with each other, and commented on having learned from having
to give arguments, and being confronted with the ideas of
someone else.
One of the students lived in California, one in Germany, eight in
Belgium, and the rest of them in the Netherlands. Obstacles for
coöperation were time-related (one member of the team studying
during weekend, the other one at workdays; one member of the
team studying at night; the other one during the day), and not
related to the impossibility of personal contact.
The workload was equally divided in all teams, according to the
students. In some cases, both students worked out a design,
discussed it and chose a final one, then divided the classes to
implement and the parts of the report to write; in some cases the
work was divided by having one student make the design, having
the other comment it, and working the other way around for the
implementation.

5.3 Learning design patterns
All students showed that they had understood the meaning of
using design patterns, that they could spot problems where a
pattern might come in handy, that they could search for patterns
that could provide a solution, and that they could argue why the
solution they chose was the most flexible. All students were able
to explain which future changes would be easy because of the
solution they had decided upon. In other words: all students
showed they had mastered the course.
In their comments, many students told us that the three
assignments, and especially the final one, had helped them to
grasp the concept of a certain design pattern: being confronted
with a real problem was what they needed to “see the light”.
Many of the professionals told us they had begun to make use of
their knowledge of design patterns in their work during the
course: the relation to their work was made very easily.

5.4 Academic students and professionals
About 15 of the 38 students studied the course for their masters
degree; the rest of the students had only a professional interest.
There was no difference between those two groups with respect to
the degree of their appreciation of the course. Professionals
commented on the usefulness of what they learned in their work;
academic students commented on the thoroughness of the material
and the depth of their understanding.

153

5.5 Support
We did not offer special support for working within a team, so
students relied on e-mail and telephone to communicate.
Providing a versioning server (e.g. CVS) for cooperation was
considered, but declined because of the troubles getting clients to
work on different Windows-versions, and because of the extra
learning curve. The only support we gave students was a proposal
on how to divide the work, and tips on how to find a suitable
teammate.
This support proved to be sufficient: working together has worked
out very well for all teams.
Another form of support consists of a website for the course,
where we have collected links to more information on the web
about the topics of the text- and workbook. The website was used
by students during the course, but they almost exclusively used
the cd containing [5] to look for useable patterns for the final
assignment.
Students did not use the discussion group that we provide for the
course to discuss problems with their assignments with other
students. They did use the discussion group during the rest of the
course, so the explanation is probably that they believe in an
implicit rule that assignments should not be discussed. We will
consider the consequences of telling students explicitly that
assignments may be discussed in this discussion group.
Teams were also supported by allowing them to send in a draft
design to the examinator, who commented on it. We chose for this
procedure to help students avoid spending much time in dead
alleys. This form of support was highly valued, especially the fact
that the comments were given within a day or two after sending in
the draft.

6. RELATED WORK
Design patterns are often used in introductory courses. In [10] for
instance, Wallingford shows how to use both procedural and
object-oriented design patterns in an introductory course. In [1],
material for introductory courses in design patterns is presented.
In [7], a set of patterns is described for guiding students through
the topics of an introductory computer science course.
A course at the master’s level imposes different requirements,
especially when not only academic students, but also
professionals are addressed. We haven’t been able to find other
courses on design patterns at this level.

7. CONCLUSIONS
Design patterns represent a subject where the academic and the
professional world almost meet by definition: patterns are a form
of distilled professional knowledge, and by studying them at an
academic level, the mechanisms of object-oriented design
principles become clear. Design patterns have been “discovered”
in the academic world, and are based on thorough professional
experience. Teaching design patterns at the master’s level, in a
way that the interests of both professionals and academic students
are met, requires hands-on experience on a project of sufficient
size and complexity.
Our approach of giving change scenario’s for a given program has
proven to be a solution for the problem of having students work
on a fairly big program to be able to learn from practical
experience, but at the same time making it possible to finish the

course within a limited amount of time. Students were able to
finish the course within 100 hours (after some adaptations to get
the assignment fitting within 28 hours), and they showed to have
learned what the course teaches, for instance by applying patterns
not taught within the course.
The cooperation within teams had the form of contact by e-mail
and telephone, without personal contact, in all cases. The limited
support for cooperation proved to be sufficient for all students.
Some considerations when using this approach are:

• Working out a scenario often both consists of refactoring the
original program (restructuring without changing the
functionality), and adding functionality. In principle, it would
be better to separate these two activities. We are afraid that the
assignment would cost students more than 28 hours if we would
ask them to explicitly separate these activities, but it would be
worthwhile to experience with it.

• Students would experience the benefits of design patterns
even more than in the current assignment if they would have to
integrate two solutions for two different scenarios. That would
show how patterns really enhance flexibility. We cannot take
this approach because of the time constraint, but we are
considering these type of assignments in courses building on the
knowledge learned in this course.

• The two students working alone sent in poorer results than
all students working in a team. Of course, the numbers are not
high enough to make statistically sound conclusions, but the
prediction that working in a team, and therefore being forced to
discuss solutions with each other benefits the learning process at
least seams to hold. It is strongly recommended to have students
work in teams.

8. ACKNOWLEDGMENTS
We would like to thank Frank Wester of the Open University of
the Netherlands for being an excellent and stimulating team leader
for this course. And we would like to thank Johan Jeuring and
Herman Koppelman, both of the Open University of the
Netherlands, for their comments on this paper.

9. REFERENCES
[1] Astrachan, O., Berry, G., Cox, L. and Mitchener, G..Design

patterns: an essential component of CS curricula,
Proceedings of the 29th SIGCSE technical symposium on
Computer science education, 2000.

[2] Beck, K., Crocker, R., Meszaros, G., Vlissides, J, Coplien,
J.O., Dominick. L. and Paulisch, F. Industrial experience
with design patterns, Proceedings of the 18th international
conference on Software engineering, 1996.

[3] Buck, D. and Stucki, D.J. Design early considered harmful:
graduated exposure to complexity and structure based on
levels of cognitive development, Proceedings of the 31rst
SIGCSE technical symposium on Computer science
education, 2000.

[4] Darwin, I. Jabberpoint, sourcecode in Java, available online:
http://www.darwinsys.com/, 1996.

154

[5] Gamma, E., Helm, R., Johnson, R. and Vlissides, J. Design
patterns elements of reusable object-oriented software,
Addison-Wesley, 1994.

[6] Goldfedder, B., and Rising, R. A training experience with
patterns, Communications of the ACM, vol 39 (10), 60-64,
1996.

[7] Proulx, V.K. Programming patterns and design patterns in
the introductory computer science course, Proceedings of the
31st SIGCSE technical symposium on Computer science
education, 2000.

[8] Shalloway, A., and Trott, J.R. Design patterns explained, a
new perspective on object-oriented design, Addison-Wesley,
2001.

[9] Stuurman, S., Wester, F.J., and Witsiers-Voglet, M. Design
patterns, Open Universiteit Nederland, 2002.

[10] Wallingford, M. Towards a first course based on object-
oriented patterns, Proceedings of the 27th SIGCSE technical
symposium on Computer science education, 27-31, 1996.

155

