
Evaluation of Software Architectures  for a 
Control System: 

A Case Study 

Sylvia Stuurman and Jan  van Katwijk 

Delft University of Technology 

Abs t r ac t .  In this paper, we give our view on the software architecture 
phase in the development process. During this phase, we distinguish mo- 
deling and structuring activities. A system is modeled according to a 
certain approach, and this model is used to instantiate a certain archi- 
tectural style. In general, the activities are intertwined. 
The choice for a certain software architecture has implications on the non- 
functional properties of the system. We illustrate our view with a case 
study of a software controller for a (toy) railroad system which we have 
available in our software lab. Several models of this system, expressed in 
formal specification languages, were made in the past, so we are able to 
produce a software architecture for the system while carrying out both 
activities separately. 
The resulting software architectures are evaluated with respect to timing 
aspects, scalability, fault-tolerance, and extendibility. Extendibility of a 
software system is especially important for domains were changes should 
be applicable on-line. Design for change should start at the software ar- 
chitectural level. 

1 I n t r o d u c t i o n  

In this paper,  we illustrate our view of the software architecture phase in the 
development process and the implications of the choice for a certain architectural 
style within that phase, with a case study of a railroad system. The essence of 
our view is that we distinguish modeling and structuring activities. The choice 
for a certain software architecture primari ly has an impact  on the non-functional 
requirements of the system. Therefore, when evaluating different architectures for 
a certain system, one should take into account the non-functional properties that 
are relevant. Roughly said, one addresses the functional requirements during the 
modeling activities, and the non-functional requirements during the structuring 
activities. 

A software architecture-driven development process consists of a Require- 
ments Analysis phase, a Software Architecture phase, a Construction phase, and 
a Maintenance and Change phase. During the Software Architecture phase, one 
models the system, chooses a software architecture style, instantiates this style, 
and refines the instantiation either by adding detail or by decomposing compo- 
nents or connections (again going through modeling, choosing a style, instan- 
tiation and refinement). This  process should result in an architecture which is 



t58 

system model --~ 

t__ 
architectural style 

t 

Fig. 1. software architecture in the development process 

defined with so much detail that either reusable components and connections can 
be fitted, or components and connections can be designed and implemented. Note 
that this view does support a sequential as well as an iterative or an incremental 
development process, and that in general, the modeling and structuring activities 
are intertwined. The Software Architecture phase as we view it is depicted in Fig. 
1. In this figure, ovals denote activities, while boxes represent products. Input 
for all activities are the requirements (not shown). 

An architectural style is a pattern in the organization of software ([12]), or, 
somewhat more precisely, '% set of design rules that identify the kinds of com- 
ponents and connectors that may be used to compose a system or subsystem, 
together with local or global constraints on the way the composition is done" 
([11]). Architectural styles are categorized in taxonomies in order to provide 
guidelines mapping classes of problems onto classes of solutions ([11]). 

In [2], Boasson argues that at the highest level, two fundamentally distinct 
approaches towards software architectures can be discerned: the data-centered 
and the function-oriented approach. To relate this statement with our view of the 
Software Architecture phase in the development process, one could say that a 
data-centered or a function-oriented model each leads to different sets of software 
architectural styles. 

We describe two software architectures on a high level of abstraction, based 
on two different approaches for system modeling for a (toy) railroad system which 



159 

we have available in our software lab. In [1], a data-centered model of the system 
is given, described in the formal specification language AE-VDM. A function- 
oriented model of the railroad system, described in PAISLey, is given in [15]. 
The railroad network described in the case study differs at some points from our 
toy railroad system, so we had to adapt the models. 

For each architecture, we derive the implications they have on those quality 
properties that are important for a railroad controller: 

T i m i n g  : The requirements of a real-time system usually contain temporal con- 
straints. In the case of the railway network, there are strict temporal cons- 
traints because of safety reasons, and less strict temporal constraints with 
respect to the schedules. Performance with respect to these constraints can 
only be measured when all design decisions have been made. It is highly desi- 
rable to decrease this gap between temporal constraints and performance at 
the architectural level. We discuss time aspects of each proposed architecture. 

Scalabi l i ty  : Both the toy railroad system and the railway network presented in 
this case study are scale models of real-life situations. Therefore, scalability 
is a requirement for a software architecture. 

Fau l t -To le rance  : One of the problems of controlling a physical system is that 
such a system often does not behave exactly according to whichever model 
we use to represent it. Reliability addresses the behaviour of a system in 
an environment behaving according to the model; robustness addresses be- 
haviour of the system in "abnormal" circumstances. Behaviour in abnormal 
circumstances is often indicated with the term "incident handling". In each 
architecture, we indicate which changes are needed to incorporate incident 
handling, in order to achieve a certain degree of robustness. Incidents are not 
only formed by unexpected events in the railway network, but also by failing 
communication and hardware. 

E x t e n d i b i l i t y  : Requirements are not as static and final as they are usually 
treated. They change, either as a result of an inaccurate modeling of the 
environment, or of a changing world. The answer to changing requirements 
is a changing system. In a system like the railway network presented here, it 
is necessary to apply changes on-line. 
Two possible mechanisms for on-line changes of software found in literature 
are: 

- A change at the architecture level, consisting of adding or destroying com- 
ponents and connections. A model for "dynamic change management" 
along these lines is presented by Kramer and Magee in [6]. 

- A change at source code level. Frieder and Segal described a scheme for 
procedure replacement in [3]. 

In our opinion, design for change should start at the architectural level. When 
evaluating an architecture, one should bear in mind that the first mechanism 
should be applicable in the changes one can think of. 

The two architectures are proposed and discussed in Sects. 2 and 3. The last 
section contains conclusions and suggestions for future research. 



!60 

2 D a t a - C e n t e r e d  A p p r o a c h :  A G l o b a l  S t a t e  A r c h i t e c t u r e  

The first type of architecture that we analyze is based on a data-centered model 
of the railroad controller for our toy railroad system, described in detail in [1]. 
The solution given below is meant as an example of the global state architecture; 
we don' t  pretend to propose an optimal solution. 

2.1 E v e n t - A c t i o n  M o d e l  

According to e.g. Parnas ([9]), the behaviour of reactive systems can successfully 
be modeled in terms of events and actions. Events can be defined in terms of 
changes in the global state of the system, including time. Actions consist of 
computations resulting in changes in the global state. Similarly, the functionality 
of the railway system can be described in rules, specifying an action for each 
discerned event. 

In the first place, the speed behaviour of each individual train is modeled 
by a finite state machine, shown in Fig. 2. In state HALT, a train is stopped 
(temporarily).  State ACC is the state of a (gently) accelerating train; state DEC 
for a gently decelerating one. A train in state CONST drives with a certain 
constant speed. A train in state EMERGENCY stops as soon as possible. 

DEC 

Fig. 2. state diagram for a train 

The transitions in the finite state machine are described by action-event ru- 
les, stating the events that trigger a transition (Table1). These events involve 
information about the desired speed for each train, to be generated on-the-fly 
from the schedule of the train. The "before" column shows the state before the 
transition; the "after" column the state after the transition; the "event" column 
describes the event that triggers the transition. 

Another finite state machine is used to model the overall behaviour of a train 
(Fig. 3). 

Five states are discerned: in the STATION state, a train is situated at a 
station; in state START, the route to the next station is (being) determined; in 



event 

Table  1. speed of a train 

Ibefore 

l iHALT , CONST, ACC or DEC 
2 HALT or DEC 
3]ACC, CONST or DEC 
41ACC, CONST or DEC 

START 

after 

I desired speedt > I actual speed I ACC 
desired speed = actual speed = 0 
I desired speedl = I actual speed I 

HALT 
CONST 

[desired speed I < [ actual speed[ DEC 
5 ACC, CONST or DEC :state of train is Error Emergency i 
6 EMERGENCY actual speed = 0"' HALT 

16t 

Fig.  3. state diagram for a train 

state GO,  the t rain is driving;  in state WAIT ,  the t rain is s topped somewhere 
along the route; state E R R O R  is used for cases of  failures. We have assumed 
that  in the initial state, a t ra in  is a lways posi t ioned at a stat ion.  The  transi t ions 
are showed in Table  2. 

Tab le  2. behaviour of a train 

Ibefore levent after 

1 STATION departure time reached START 
2 START or GO next part of route free GO 
3 START or GO next part  of route blocked WAIT 
4 GO destination reached ~TATION 
5 WAIT next part of route free GO 
6iWAIT deadlock occurred START 
7 all states error occurred .......... E R R O R  

Data  such as the desired speed is set as a side effect of  state transit ions.  Table 



162 

3 shows a simple way of setting the desired speed. Other side effects consist of 
determining the route to be taken, and the setting of switches in the railway 
network. 

Table  3. setting the desired speed 

Istate transition desired speed 

1 START --~ GO desired speed + maximum speed 
2 GO -+ WAIT desired speed = 0 
3 GO --+ STATION desired speed = 0 

2.2 S o f t w a r e  A r c h i t e c t u r e  

Figure 4 shows an architecture, based on this model. A central data  store com- 
ponent contains the relevant data  and sends events, representing changes in the 
state or time, to components  acting upon these events. These components  are 
able to read and write the data. The proposed architecture can be seen as an 
instantiation of the blackboard style ([12]). 

Global Data Store 

train behaviour states 

train behaviour _ train speed states 

controller - ~ i  a c t u a l  train into 

J 
parameters of  trains 

railway topolo~" 

actual railway info 

route ~ schedule5 

desired speeds 

switch seUin~s 

time 

train speed 
[ controller 

:,, switch 
controller 

railroad 
.system 

, ,  r 

Fig. 4. global state architecture 

The Global Data Store: is used to store the global state. Essential of this archi- 
tecture is the fact that all data  are stored globally. As a result, all data needed 
by components  are found in the global data store. 

Information kept in the global data store consists of the state of the behaviour 
and speed of each train, of the actual information (about speed and position) of 



163 

each train, the parameters of the trains, the schedules, the derived routes and 
desired speed, the topology of the railway, the switch settings, and the time. 

Certain transitions in the global state represent events. 

The Train Behaviour Controller: carries the responsibility of maintaining the 
finite state machine representation of the behaviour of the trains, according to 
the rules described in Table 2. The information it needs consists of the train 
behaviour states, the schedules, time, the positions, speed and directions of other 
trains, and the train parameters. The component modifies the train behaviour 
states, the desired speed, and the switch settings. 

The Route Planner: is responsible for determining the route to be taken to the 
next station mentioned in the schedule of the train. 

One may implement a deadlock avoiding route planner, or one that does less 
planning ahead. In the last case, a second task of the route planner is deadlock 
detection (and consequently determine new routes). 

Information needed by the route planner consists of the schedules, the railway 
topology, and of the positions, speed and direction of the trains. 

The Train Speed Controller: is responsible for maintaining the desired speed in 
a comfortable way, according to the rules in Table 1. Another task of this com- 
ponent is to update information about the actual position, speed and direction 
of the trains. 

Changes in the desired speed for a train, and the transition to behaviour state 
ERROR, form events of interest for train speed controller. 

The Switch Controller: has the task of updating information about the state of 
the switches and setting them. 

Multiplicity of Components: The architecture as it is proposed here does not 
state anything about the multiplicity of the components. Obviously, there is only 
one data store. On the other hand, each train might have its own behaviour 
and speed controller, and route planner. Multiplicity of the switch controller is a 
possibility as well. Multiplicity of these components is an open design decision 
in this architecture. 

2.3 Implications on Properties 

Timing: To be able to analyze the timing behaviour of a system implemented 
along these lines, the components performing the functionality should be imple- 
mented as cyclic, asynchronously communicating processes. These processes poll 
the global data store to obtain information about the relevant data. Consequently, 
restrictions to the cycle time can be derived from the temporal constraints and 
the speed and duration of the connections and computations. 



164 

Scalability: In the case that routes for the trains are generated decentrally, on 
the fly, the possibility of deadlocks is present. With an increasing number of 
trains driving on a railway network, deadlocks will occur more frequently. The 
introduction of deadlock avoidance may become necessary, though this will have 
implications on the timing aspect. However, whether deadlock avoidance is chosen 
or not, the architecture as we have presented it here suits both solutions. Because 
the global state contains the data of all trains, a deadlock avoiding algorithm can 
be introduced very easily. 

For scalability reasons, it should be possible to parallelize the computation. 
As we have seen, the train behaviour and train speed controller can be paralleli- 
zed (one for each train). The train speed controller can be split into a component 
maintaining the speed, and a component polling the train for actual speed, posi- 
tion and direction information. 

The route planner might be parallelized as well, but in that case, deadlock 
avoidance is better performed by a separate component.  In both cases, compu- 
tation time increases with an increase of the complexity of the railway network. 

Another possible bottleneck is formed by the access on the global data store. 
The introduction of (parallel) agents detecting changes in parts of the state, and 
able to read and write data, might be needed with an increase of the railroad 
system. 

Extendibility: Changes in the topology of the network are introduced as changes 
in the data of the global state. A component,  responsible for deriving new sche- 
dules, might be introduced. In this case, the timing issue (components should 
not make use of the new data too soon or too late) is rather trivial: a physical 
change in the railway network topology will always take place with trains at a 
safe distance, so the new situation will be read by the controller components by 
the time that a train has reached a new situation. 

Changes in the parameters of trains are to be introduced in the same way, by 
changing the data in the global data store. When the changes are applied when 
the train is in state STATION at a station, the new parameters will be used in 
time. 

The same applies for changes in the schedules of trains: the schedule is read 
by the route planner component when the train is going to leave the station, so 
the new data will be used on time. 

In general, the conclusion is that the proposed architecture is an easily ex- 
tendible architecture. Data can be changed fairly easy, and an extension of the 
functionality can be done by adding or changing components, and adding or 
changing data in the global data store. No big changes in the architecture are 
needed, because components never communicate directly. 

Prerequisites are that changes in the global data store can be applied from 
outside, and that components and new data and datatypes can be added at run- 
time. 

Fault-Tolerance: A failing train should result in an emergency stop. In our model, 
this will be effectuated when the event, "error" occurs in the global data state 



165 

(Table 2). Error-detection might be an extra task of the train speed controller 
(actual speed differs too much from the expected speed), or by a new component. 

Incident handling requires an overall view of the system. In the global state 
architecture, each component conceptually has such an overview. As a result, 
one can add components with intelligent incident handling capacities fairly easy. 

A failing communication network is another source of problems. We can dis- 
cern different type of data in the data store: information that is updated fre- 
quently, such as the actual position, speed and direction of the trains, and infor- 
mation representing a state, where each change is a major difference with the old 
data. 

The loss of messages containing the first type of data is not really a problem: 
as long as the time restrictions are not too tight, a decision based on information 
that is slightly older than it should be will do no harm. 

Messages containing information about an event or a state transition may not 
get lost. A solution might be to handle this kind of information in the same way 
as continually updated information: instead of waiting for an event, components 
poll the data in the global data store. Each time when they poll, they update the 
state information (or data changed as a side effect) in the global data store. 

To make the system fault-tolerant, the global data store should be duplicated 
and/or  distributed on different hardware. In the case that all information is stored 
in the global data store, setting an extra processor with one or more components 
at work when another fails is easy, because local data don't  exist. 

3 F u n c t i o n - C e n t e r e d  A p p r o a c h :  A D a t a  F l o w  A r c h i t e c t u r e  

The second software architecture is loosely based on a PAISLey model for the 
railroad controller, described in [15]. This PAISLey model is based on two com- 
putation models: asynchronously interacting concurrent processes and functional 
programming. A specification written in PAISLey requires a process structure 
and a definition of the structure of interprocess communication, and therefore 
can be mapped almost directly onto a software architecture. 

The PAISLey specification of the railroad controller consists of cyclic, asyn- 
chronously communicating processes. 

3.1 S o f t wa re  A r c h i t e c t u r e  

The dataflow architecture depicted in Fig. 5 is an instantiation of the control- 
loop architectural style ([10]). The position of the train is the process variable 
to control. The actual position is compared to the desired position, and diffe- 
rences between them trigger speed or direction commands. The desired position 
is computed by consulting the route (which contains time information) and the 
parameters for the train. The actual position is obtained by polling the trains. 



166 

positio 

I route 

planner 

actual pesition computer deadl, :k info 

desired position computer 

<tirol POS~> <! I Im~iti°n> 

L~ comparator >[ switch contrn|lvr 

, speed, direction / desired switch settings j 
speed and dirdction commands switch ] ...... ds 

Fig. 5. a dataflow architecture 

The Route Planner: computes  the route for the trains. Data  local to this compo- 
nent are the schedules. In the case of a deadlock, the route planner gets a message 
from the Compara tor ,  whereupon it computes new routes. 

The Comparator: compares  the actual and desired position. To simplify compa- 
rison, positions are at t r ibuted with an indication of time. A difference between 
positions at a same t ime indicates the need for control, to be executed in the 
form of speed and direction commands  for the train, and sometimes commands  
to set a switch. 

Information needed by the Compara tor  consists of the position and speed of 
all the trains and the state of the switches in the railway network. 

The Actual Position Computer: polls the trains and derives <t ime,  position, 
speed> for the trains. 

The Desired Position Computer: derives the desired position for each train from 
the route, sent by the route planner. 

The Switch Controller: keeps track of the state of the switches in the railroad, 
and sets them according to the messages of the Compara tor .  

Multiplicity of Components: Both position computers  and the compara tor  in 
this architecture can have multiple instances, i.e. one for each train. For the 
route planner , this is less obvious. Introducing deadlock avoidance in a system 
with one route planner for each train will be difficult, and will require severe 



167 

communication between the different components. In a system where the routes 
for all trains are computed by one component, the information needed to avoid 
deadlocks is available at the right place. 

3.2 Impl icat ions  on  Propert ie s  

Timing: The comparator and the switch controller are triggered by both po- 
sition controllers, which are the "drivers" of the system. From the cycle time 
of the processes, the speed of the connections and the time needed for diffe- 
rent computations, one can analyze whether the system will respect the temporal 
constraints. 

Again, there is the question of deadlock avoidance or detection. Deadlock 
avoidance should be performed by the route planner. In that case, there should 
be one route planner for the whole system. 

The most logical place for deadlock detection is the comparator, because it 
receives information about the position of each train. However, the computation 
time needed for deadlock detection might conflict with the temporal constraints 
for the comparator. In that case an extra component should be introduced. 

Scalability: As we have seen, parallelization can be introduced for both position 
computers and for the comparator. Inherent to this solution is that the computa- 
tion time of the comparator increases with an increase of the number of trains: 
to determine whether a train is able to go on or should stop, the comparator 
needs information about the speed and position of all trains. An extra compo- 
nent, filtering the relevant information for the comparator, might be needed when 
upscaling the system. 

The same applies for the route planner: its computation time increases with 
an increase of the complexity of the railway system. 

Extendibility: A change in the railway topology network should be applied to 
data in all four components. Changes in the parameters of a train should be 
applied in the comparator for the train. New schedules are to be added in the 
route planner. 

In general, because data and computation are intertwined in this architecture, 
as opposed to the previous one, one should, for each change in data, determine 
which of the components make use of the information. In the case of an extension 
of the functionality, one should determine which information is needed for a to-be- 
added component, and from which components this information can be derived. 

Therefore, changes are inherently harder to apply than in the previous archi- 
tecture. 

Fault-Tolerance: A failing train can be detected by the comparator (because of 
an increasing difference between the actual and desired position). Because the 
system is based on the comparison between the desired and the actual situation, 
no extra measures are needed to take failing trains into account. The comparator 
is the component that has an overall view of the system, because it receives 



168 

speed and position information of all trains. However, this component is not the 
appropriate one to be charged with incident handling, because it should perform 
under strict temporal  constraints. Adding incident handling is another case of 
adding functionality, and as has been said above, this is less straight-forward in 
the dataflow architecture as in the global state architecture, because in this case, 
components communicate directly, and data and functionality are not separated. 

The connections between the components are of the datafiow type in some 
cases (continuously updated information): this is the case for the connection bet- 
ween the railroad system and the actual position computer,  and for the connection 
between both position computers and the comparator.  The other connections are 
used for commands, or for information that is delivered once (a new route, a 
deadlock situation). When these connections fail to deliver a message, the re- 
sult may be a disaster. An obvious solution is to deliver these kind of messages 
multiple times. 

Failing processors in this system are harder to replace than in the previous 
architecture. Every component has local data. The only way to be able to replace 
a processor is to keep track of these local data on the redundant hardware. 

4 C o n c l u s i o n  a n d  F u t u r e  W o r k  

4.1 Conclusion 

Software Architecture in the Development  Process: In this paper, we 
illustrated our view on the software architecture phase in the development pro- 
cess, sketched in Fig. 1, with a case study of a railroad controller in software. 
Concerning the development process, we can make the following remarks: 

- In this case study, the software architecture phase was carried out sequenti- 
ally: modeling the system took place first, and then a style was chosen and 
instantiated. The reason for this order was that several models of the system 
were already available. 
In general, system modeling and the choice and instantiation of an architec- 
tural style are carried out at the same time. 

- The case study clearly shows the existence of relations between the activities 
within the software architecture phase. The choice of a model influences the 
choice of an architectural style, and vice-versa. The adequacy of different 
approaches toward system modeling for different architectural styles should 
be added to taxonomies of styles. 

- Architectural styles differ more in the degree with which they satisfy the 
non-functional requirements than the functional requirements. 

Implications of  Architectural Styles on Non-Functional  Requirements: 
Here, we summarize the effects of the proposed architectures on the quality pro- 
perties that we found important.  



169 

Timing: Whether temporal constraints can be met or not can only be determined 
in a fully implemented system. In both architectures, we were able to reason under 
which conditions timing analysis would be possible, and we could reason about 
possible bottlenecks. At the level of abstraction of both proposed architectures, 
difference between the solutions with respect to timing issues cannot be found. 

Scalability: A big difference between both proposed architectures is that in the 
global data store architecture, information is always available to every compo- 
nent. As a result, it is easy to divide the functionality of one component between 
several others. In the dataflow architecture, when breaking one component into 
several ones, according to functionality or to components of the controlled sys- 
tem, one should always bear in mind how the newly created components get their 
information. 

Fault-Tolerance: Introducing incident handling requires on the one hand the pos- 
sibility for a component to run in a separate thread, and on the other hand the 
possibility to gather information about the global state of the system. In the 
global state architecture, this requires a decision for multiple threads. In the da- 
taflow architecture, multiple threads are part of the style. On the other hand, 
extending the functionality in this architecture is less easy, because components 
communicate directly (so one has to determine where the necessary information 
should be obtained). 

Failing hardware is handled more easily in the global state architecture, be- 
cause the state is always available. The global state itself however, should be 
duplicated. 

Extendibility: Changes of data (topology of the railroad network, parameters 
of the trains, schedules) are very easy to apply in the global data store archi- 
tecture. In the dataflow architecture, one should always determine which of the 
components store such information locally. 

In general, changes to the functionality of the system are much easier to apply 
in the global data store architecture, because there is no need to analyze where 
the information, needed for each component, is to be obtained. 

A requirements for the possibility of on-line changes is that it should be 
possible to add components, data and data-types on-line. 

4.2 Fu tu re  Direct ions  

On-line system evolution in real-time systems is considered one of the future chal- 
lenges in this area ([13]). A promising approach would be to explore the possibi- 
lities of the global state architecture with this respect. Changes in functionality 
within this architecture can be applied by adding or substituting components. In 
addition, facilities to change the global state, and the generation and distribution 
of events, should be developed. 

Even without facilities to change the global state, it is comparatively easy to 
handle failing processors when using the global state architecture, assuming the 



170 

global state component  is fail-proof: components  performing computat ion may 
be substituted by other components  without a loss of data. 

The description of an architecture evokes a static view of components  and 
connections. Architectures with possibilities for on-line system evolution are dy- 
namic. Apparently, techniques to describe and analyze the dynamics of archi- 
tectures are lacking. Representation of the dynamics of architectural styles and 
instantiations form an interesting subject for future research. 

R e f e r e n c e  s 

1. T. Biegstraaten, K. Brink, J. van Katwijk, and H. Toetenel. A simple railroad 
controller: A case study in real-time specification. Technical Report 94-86, Delft 
University of Technology, Department of Technical Mathematics and Informatics, 
1994. 

2. M. Boasson. The artistry of software architecture. IEEE Software, 12(6):13-17, 
November 1995. 

3. O. Frieder and M.E. Segal. Dynamic program updating in a distributed computer 
system. In Proceedings of the IEEE Conference on Software Maintenance, Phoenix, 
Arizona, October 1988. 

4. B. Hayes-Roth, K. Pfleger, P. Lalanda, P. Morignot, and M. Balabanovic. A 
domain-specific software architecture for adaptive intelligent systems. IEEE Trans- 
actions on Software Engineering, 21(4):288-301, April 1995. 

5. K. Jeffay. The real-time producer-consumer paradigm: A paradigm for the con- 
struction of efficient, predictable real-time systems. In Proceedings of the 1993 
ACM/SIGAPP Symposium on Applied Computing, pages 796-804, Indiana, Fe- 
bruary 1993. ACM Press. 

6. J. Kramer and J. Magee. The evolving philosophers problem: Dynamic change 
management. [EEE Transactions on Software Engineering, 16(11):1293-1306, No- 
vember 1990. 

7. P. Kruchten. The 4+1 view model of architecture. IEEE Software, 12(5):42-50, 
November 1995. 

8. R.T. Monroe, A. Kompanek, R. Melton, and D. Garlan. Architectural styles, de- 
sign patterns and objects. IEEE Software, 14(1), January 1997. 

9. D.L. Parnas, A.J. van Scouwen, and S.P. Kwan. Evaluation of safety-critical soft- 
ware. Communications of the ACM, 33(6):636-648, September 1990. 

10. M. Shaw. Beyond objects: A software design paradigm based on process control. 
A CM Software Engineering Notes, 20(1), January 1995. 

11. M. Shaw. A field guide to boxology: Preliminary classification of architectural 
styles for software systems, manuscript, 
http : / / www.cs.cmu.edu/ afs / cs /pro ject /compose /www /html /Publications /1.html, 
1996. 

12. M. Shaw and D. Garlan. Software Architecture: Perspectives on an Emerging Dis- 
cipline. Prentice-Hall, 1996. 

13. J.A. Stankovic. Real-time and embedded systems. Group Report of the Real- 
Time Working Group of the IEEE Technical Committee on Real-Time Systems, at 
http: / /www-ccs.cs.ttmass.edu/sdcr /rt.ps, 1996. 

I4. A.S. Tanenbaum. Structured Computer Organisation. Prentice-Hall, 1976. 



171 

15. J. van Katwijk and H. Toetenel. Experience using paisley for real-time specifi- 
cation. Technical Report 95-29, Delft University of Technology, Department of 
Technical Mathematics and Informatics, 1995. 


