
Modeling and analysis of complex computer
- the MTCCS approach -

systems

Hans Toetenel, Ronald Lutje Spelberg, Sylvia Stuurman, Jan van Katwijk
Faculty of Technical Mathematics and Informatics

Delft University of Technology
132 Julianalaan, 2628 BL Delft, The Netherlands

Abstract

The paper presents results from work in progress on
finding a method for formal specijication and verifica-
tion of real-time concurrent systems that incorpomte a
non trivial data component. We have extended Timed
CCS, a timed CC.9 variant with a model-oriented data
language based on VDM. The semantics of the exten-
sion, called MTCCS is expressed in a combination of
denotational and operational style. We show how veri-
fication of temporal logic properties based on symbolic
model checking can be made possible for
bination notation.

such a com-

1 Introduction and overview

Complex computer systems are frequently highly
concurrent, distributed and often have real-time pro-
perties. Since Leveson [14] had pointed out that
modeling and analysis form the main challenges in
building complex real-time systems much research has
been carried out in the field of formal specification.
The underlying theory of formal specification techni-
ques has been investigated thoroughly and can be re-
garded as relatively mature. At the same time, tools
have been developed that facilitate construction and
analysis of formal specifications. The benefits of the
use of formal specification languages are clear. They
provide a concise framework within which software
requirements and designs can be expressed unambi-
guously. The resulting specifications are more suited
for analysis and verification.

Figure 1 schematically depicts relationships between
notations and tools we use in a notational framework
for formal system modelling, analysis and implemen-
tation.

MTCCS, (Model-oriented Timed Calculus of Com-
municating Systems) is a formal specification language
aimed at defining real-time concurrent systems with a

system specification
notion

requirement speoificarion
notation

implementation technique verification technique

Figure 1: Notational Framework

non-trivial data component. It is based on Timed CCS
[23], a timed version of process algebra notation CCS
[16] and VDM-SL i [8], the specification notation of
the VDM methodology [5], [13].

To express properties of MTCCS specifications we
us a real-time temporal logic based on TCTL 121.

The conceptual model is based on a structural inte-
gration of denotational semantics and structural opera-
tional semantics (DESOS) . In this approach the overall
semantic style is operational. In the definition of the
transition rules semantic functions are applied which
are defined by denotational semantic definitions. Both
MTCCS and RFO-TCTL are given a DESOS seman-
tics.

The implementation of MTCCS specifications is ba-
sed on SYM-UN, a distributed tree based commu-
nication protocol for basic CCS implemented in the
Java language. Its definition and implementation of

‘The specification language for VDM for which an IS0
standard is currently being developed (IS0 SC22/WG19/N-20).

423

Proceedings of the 2nd IEEE International Conference on Engineering of Complex Computer Systems (ICECCS '96)
0-8186-7614-0/96 $10.00 © 1996 IEEE

the SYM-UN protocol are omitted from this paper.
Our method for verifying property specifications is

based on model checking, which allows verification of
temporal logic properties in a highly automatic man-
ner.

The remainder of this paper is organized as follows.
In section 2 an overview is presented of the MTCCS.
Section 3 introduces the notation for requirement spe-
cification RFO-TCTL. Section 4 is dedicated to verifi-
cation. It summarizes our approach to model-checking
MTCCS specifications with respect to properties ex-
pressed in the RFO-TCTL notation. Fimally section
5 presents a discussion of our results sofar, compares
our approach to related work and projects our work
into the future. It is assumed that the reader is more
or less acquainted with VDM-SL. Throughout this pa-
per VDM-SL is used to specify syntactic and semantic
domains and semantic functions.

2 The MTCCS notation

This section introduces shortly the syntax and se-
mantics of MTCCS. For a more comprehensive des-
cription of the language, see [15]. MTCCS is a suc-
cesor to a syntactic and semantic framework based on
the same combination of VDM-SL and TCCS, called
MOSCA [22]. Th e aim of the development of MOSCA
was to increase the applicability of VDM in the area of
distributed, parallel and real-time systems. It has been
given various forms of semantics. The current form of
the MTCCS semantics is strongly based on the first
semantics for MOSCA given in [21]. The main dif-
ferences between MOSCA and MTCCS are the more
precise definition of the state component of MTCCS
and the particular approach to model the looseness as-
pect of VDM-SL within the operational semantics of
MTCCS.

A MTCCS specification describes four aspects of
systems of communicating processes: their data-
containment, their functional behaviour, their process-
structure and their behaviour in time. Associated with
these aspects are the following MTCCS constructions :
data type and state definitions, functions and operati-
ons on data, agent definitions, and timed actions. The
basic structuring element in the MTCCS model of a
system is a process, called agent. The action sequence
associated with an agent is called its behaviour.

The core syntax of the process component of
MTCCS is defined by the abstract domains given in fi-
gure 2. It forms the base syntax on which the MTCCS
semantics are defined. The core syntax of VDL-SL is

omitted in this paper. The full definition of the core
syntax of VDM-SL can be found in [I].

Spec: : Behaviovr : ProcId -% (BExpr x V&Id)

State : ProcId -? (Vurld < Type))
Init : BExpr

BExpr = InAct 1 OatAct 1 Idle 1 StateMen 1 Let 1 If 1
Agent 1 Choice 1 Par 1 Restrict / Relabel 1 Null
Wait 1 Delay

InAct : : label : ActId OutAct :: label : ActId
mvc~r : VarId mval : VExpr
dvar : Yarld dvar : VarId
cant : BExpr cant : BExpr

Idle : : durval : VExpr StateMan : : man : Statement
cant : BExpr cant : BExpr

Let :: var : VarId If : : cond : VExpr
val: VExpr cant : BExpr
cant : BExpr alt : BExpr

Agent : I name : ProcId Choice:: left : BExpr
val : [VExpr] right : BExpr

Par : : left : BExpr Restrict:: res : Id-set
right : BExpr cant : BExpr

Relabel:: cant : BExpr

rel : ActId -% ActId

Wait :: timer : IF!>’ Delay : : act : InAct
cod : BExpr delay : IR~o

1 OutAct

Figure 2: MTCCS Core syntax

The core syntax domain V,&pr denotes all value
expressions defined by the VDM-SL part of MTCCS.
It offers basic types like natural numbers (N), inte-
gers (Z), reals (lw), booIeans (B), product and union
types, record types optional types, function and ope-
ration types. Further it offers complex data structu-
ring facilities based on set types, sequence types and
map types. It features subtyping through type inva-
riants. Some concrete syntax constructions to spe-
cify the behaviour of agents are shown in Figure 2.
The core domain Spec holds the information of defi-
ned agent behaviours (Behaviour), global state com-
ponents (State), and the behaviour associated with the
specification (Init). The first four behaviour expres-
sion domains InAct, OutAct, Idle, and State&fan form
the prefix expressions. The first two prefix behaviour
expression domains, InAct and OutAct are the timed
prefixes of TCCS. The third prefix domain describes
the idle prefix of TCCS, which expresses time progres-
sion. The fourth prefix domain handles the infusion of

424

Proceedings of the 2nd IEEE International Conference on Engineering of Complex Computer Systems (ICECCS '96)
0-8186-7614-0/96 $10.00 © 1996 IEEE

Construction Typical example
Timed in prefix action(variable) * var 0 . - -
Timed out prefix action(vaZue) * var Q . . .
Idle prefix -
State manip. prefix
If expression
Let expression
Agent instantiation
Choice
Parallel composition
Restriction
Relabeling
Null agent

idle due @ - . .
u(statement) 0 . . +
if condition then . . . else . . .
let var = value in . . -
A(value)
behaviour $ behaviour
behaviour 1 behaviour
behaviour \ {labels}
behaviour[reZabeZing]
null

Figure 3: MTCCS concrete syntax examples

state manipulation. It specifies a VDM-SL statement
that manipulates the state of the agent in which the
construction appears.

The If expression enables conditional behaviour
specification steered by data conditions. The Let
enables local value bindings, either fixed or loose. E.g.
in

let t = 3 in d(z)

the value 3 is bound to the identifier x in a determi-
nistic way. In

let x = (let v E 1,2,3} in v)in d(z)

it is not deterministically decided what the value of
the expression bound to c will be. It may be either
1, or 2 or 3. Depending on the context of the ex-
pression the choice is made in specification time or-in
execution time. The Agent domain describes parame-
terized agent instantiation, like d(x). The next four
domains describe standard CCS operators. The choice
construction enables nondeterministic selection of spe-
cific behaviour.

The Choice, Par, Restrict, and Relabel domains
model the standard CCS constructs. The first specifies
non-deterministic choice between behaviours, while the
other three are used to model parallelism and commu-
nication.

The Null construction denotes the passive agent
null. Wait and Delay are two core syntax domains
without a concrete syntax counter part. They are in-
termediate forms, used to give meaning to the passing
of time.

The semantics of MTCCS consists of two compo-
nents; an operational semantics of the process part,

and a denotational semantics of the data manipula-
tion part. The exact form of the data manipulation
part of MTCCS is not discussed in this paper, but
can be found in [l]. To be able to define the operatio-
nal semantics of the process part, only the ‘interface’
between the two semantics needs to be defined.

A labeled transition system M : (S, SO, 23, R) cor-
responding to an MTCCS specification consists of a
set of states S, an initial state se E S, a set of la-
bels C, and a transition relation R. A state (B, p, v) E
(BExpr x EnvT x Store) consists of three components,
an MTCCS behaviour expression B, a local definitions
valuation p, and a state valuation v.

EnvT and Store are defined as follows.

Env, Store = Id % Vu1

EnvT = EnvT . EnvT 1 Env

A local definitions environment p E EnvT is tree of
environments, patterned after the process structure of
the corresponding global state. As can be seen from
the semantics rules given below, every parallel compo-
sition causes the local environment to split! creating a
local environment for each subprocess. A choice may
also cause the local environment to split, but this is
only temporary. The reason for this is that some ac-
tions do not resolve the choice, but do already change
the local environments of the components of the choice.
There is one global state environment v E Store, which
is shared by all subprocesses.

A transition relation R C S x C x S is a set of
transitions (s, I, s’) , where Z E C is a transition label.
The set of transition labels E is defined as follows:

l Z!vaZ, Z?val E (dctld x VuZ): external actions
l y: Visible internal actions (as a consequence of in-

ternal communications and state manipulations)
l L: Invisible internal actions (as a consequence of

evaluation of expressions in IdZe, AgentIf and Let
constructions, and expansion of environments in
Choice and ParComp expressions. These actions
do not resolve Choices.

l e(b), 6 E Iwl”: Time actions
The interface between the operational semantics and

the denotational semantics consists of two components;
the evaluation of state manipulations, and the evalu-
ation of value expressions. This interface is realized
by the semantical function eval which is defined as fol-
lows:

eval :
i

Statement -+ (EnuT x Store -+ Store)-set
VExpr + (EnvT x Store + VuZ)-set

2The dual rule is not shown

425

Proceedings of the 2nd IEEE International Conference on Engineering of Complex Computer Systems (ICECCS '96)
0-8186-7614-0/96 $10.00 © 1996 IEEE

Idle2 I (Wuit(d,B),p,v)~:!(~ait(d--,B),p,v), d>b

Idle3 (Waitfd, B), p,v) "2 (B, p, v)

ActDelayl (act,p,v) i (Delay(act,O),p,v) act E (InAct(-,-,-,-), UutA~ct(-,-,-,-)I

Figure 4: Semantics of MTCCS

In the case of a state manipulation, the semantical
function takes a Statement and returns a set of (seman-
tical) state transformers. A state transformer takes
a local environment and a state environment and re-
turns a new state environment. In the case a value
expression (VBcpr) is evaluated a set of evaluators is
returned. Each evaluator takes a local and a state en-
vironment and returns a value.

An environment that holds the bindings of process
identifiers to behaviour expressions is left implicit in
the semantic rules. This environment is assumed to
be created by the Spec rule and is used in the Agent

rule. In the latter the existence of a function Agent :

Procld 3 (BEqw x V&-Id) is assumed.
For clarity we will use only single values in input

actions, output actions, let constructions, and value
parts. The extension to more complex expressions is
straightforward and does not have any consequences
for the discussions presented here.

3 Requirement specification

The requirement specification notation is intimately
associated with the approach taken for verification, in
our case model checking. The temporal logics traditi-

426

Proceedings of the 2nd IEEE International Conference on Engineering of Complex Computer Systems (ICECCS '96)
0-8186-7614-0/96 $10.00 © 1996 IEEE

