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Abstract 

The paper presents results from work in progress on 
finding a method for formal specijication and verifica- 
tion of real-time concurrent systems that incorpomte a 
non trivial data component. We have extended Timed 
CCS, a timed CC.9 variant with a model-oriented data 
language based on VDM. The semantics of the exten- 
sion, called MTCCS is expressed in a combination of 
denotational and operational style. We show how veri- 
fication of temporal logic properties based on symbolic 
model checking can be made possible for 
bination notation. 

such a com- 

1 Introduction and overview 

Complex computer systems are frequently highly 
concurrent, distributed and often have real-time pro- 
perties. Since Leveson [14] had pointed out that 
modeling and analysis form the main challenges in 
building complex real-time systems much research has 
been carried out in the field of formal specification. 
The underlying theory of formal specification techni- 
ques has been investigated thoroughly and can be re- 
garded as relatively mature. At the same time, tools 
have been developed that facilitate construction and 
analysis of formal specifications. The benefits of the 
use of formal specification languages are clear. They 
provide a concise framework within which software 
requirements and designs can be expressed unambi- 
guously. The resulting specifications are more suited 
for analysis and verification. 

Figure 1 schematically depicts relationships between 
notations and tools we use in a notational framework 
for formal system modelling, analysis and implemen- 
tation. 

MTCCS, (Model-oriented Timed Calculus of Com- 
municating Systems) is a formal specification language 
aimed at defining real-time concurrent systems with a 

system specification 
notion 

requirement speoificarion 
notation 

implementation technique verification technique 

Figure 1: Notational Framework 

non-trivial data component. It is based on Timed CCS 
[23], a timed version of process algebra notation CCS 
[16] and VDM-SL i [8], the specification notation of 
the VDM methodology [5], [13]. 

To express properties of MTCCS specifications we 
us a real-time temporal logic based on TCTL 121. 

The conceptual model is based on a structural inte- 
gration of denotational semantics and structural opera- 
tional semantics (DESOS) . In this approach the overall 
semantic style is operational. In the definition of the 
transition rules semantic functions are applied which 
are defined by denotational semantic definitions. Both 
MTCCS and RFO-TCTL are given a DESOS seman- 
tics. 

The implementation of MTCCS specifications is ba- 
sed on SYM-UN, a distributed tree based commu- 
nication protocol for basic CCS implemented in the 
Java language. Its definition and implementation of 

‘The specification language for VDM for which an IS0 
standard is currently being developed (IS0 SC22/WG19/N-20). 
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the SYM-UN protocol are omitted from this paper. 
Our method for verifying property specifications is 

based on model checking, which allows verification of 
temporal logic properties in a highly automatic man- 
ner. 

The remainder of this paper is organized as follows. 
In section 2 an overview is presented of the MTCCS. 
Section 3 introduces the notation for requirement spe- 
cification RFO-TCTL. Section 4 is dedicated to verifi- 
cation. It summarizes our approach to model-checking 
MTCCS specifications with respect to properties ex- 
pressed in the RFO-TCTL notation. Fimally section 
5 presents a discussion of our results sofar, compares 
our approach to related work and projects our work 
into the future. It is assumed that the reader is more 
or less acquainted with VDM-SL. Throughout this pa- 
per VDM-SL is used to specify syntactic and semantic 
domains and semantic functions. 

2 The MTCCS notation 

This section introduces shortly the syntax and se- 
mantics of MTCCS. For a more comprehensive des- 
cription of the language, see [15]. MTCCS is a suc- 
cesor to a syntactic and semantic framework based on 
the same combination of VDM-SL and TCCS, called 
MOSCA [22]. Th e aim of the development of MOSCA 
was to increase the applicability of VDM in the area of 
distributed, parallel and real-time systems. It has been 
given various forms of semantics. The current form of 
the MTCCS semantics is strongly based on the first 
semantics for MOSCA given in [21]. The main dif- 
ferences between MOSCA and MTCCS are the more 
precise definition of the state component of MTCCS 
and the particular approach to model the looseness as- 
pect of VDM-SL within the operational semantics of 
MTCCS. 

A MTCCS specification describes four aspects of 
systems of communicating processes: their data- 
containment, their functional behaviour, their process- 
structure and their behaviour in time. Associated with 
these aspects are the following MTCCS constructions : 
data type and state definitions, functions and operati- 
ons on data, agent definitions, and timed actions. The 
basic structuring element in the MTCCS model of a 
system is a process, called agent. The action sequence 
associated with an agent is called its behaviour. 

The core syntax of the process component of 
MTCCS is defined by the abstract domains given in fi- 
gure 2. It forms the base syntax on which the MTCCS 
semantics are defined. The core syntax of VDL-SL is 

omitted in this paper. The full definition of the core 
syntax of VDM-SL can be found in [I]. 

Spec: : Behaviovr : ProcId -% (BExpr x V&Id) 

State : ProcId -? ( Vurld < Type)) 
Init : BExpr 

BExpr = InAct 1 OatAct 1 Idle 1 StateMen 1 Let 1 If 1 
Agent 1 Choice 1 Par 1 Restrict / Relabel 1 Null 
Wait 1 Delay 

InAct : : label : ActId OutAct :: label : ActId 
mvc~r : VarId mval : VExpr 
dvar : Yarld dvar : VarId 
cant : BExpr cant : BExpr 

Idle : : durval : VExpr StateMan : : man : Statement 
cant : BExpr cant : BExpr 

Let :: var : VarId If : : cond : VExpr 
val: VExpr cant : BExpr 
cant : BExpr alt : BExpr 

Agent : I name : ProcId Choice:: left : BExpr 
val : [ VExpr] right : BExpr 

Par : : left : BExpr Restrict:: res : Id-set 
right : BExpr cant : BExpr 

Relabel:: cant : BExpr 

rel : ActId -% ActId 

Wait :: timer : IF!>’ Delay : : act : InAct 
cod : BExpr delay : IR~o 

1 OutAct 

Figure 2: MTCCS Core syntax 

The core syntax domain V,&pr denotes all value 
expressions defined by the VDM-SL part of MTCCS. 
It offers basic types like natural numbers (N), inte- 
gers (Z), reals (lw), booIeans (B), product and union 
types, record types optional types, function and ope- 
ration types. Further it offers complex data structu- 
ring facilities based on set types, sequence types and 
map types. It features subtyping through type inva- 
riants. Some concrete syntax constructions to spe- 
cify the behaviour of agents are shown in Figure 2. 
The core domain Spec holds the information of defi- 
ned agent behaviours (Behaviour), global state com- 
ponents (State), and the behaviour associated with the 
specification (Init). The first four behaviour expres- 
sion domains InAct, OutAct, Idle, and State&fan form 
the prefix expressions. The first two prefix behaviour 
expression domains, InAct and OutAct are the timed 
prefixes of TCCS. The third prefix domain describes 
the idle prefix of TCCS, which expresses time progres- 
sion. The fourth prefix domain handles the infusion of 
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Construction Typical example 
Timed in prefix action( variable) * var 0 . - - 
Timed out prefix action(vaZue) * var Q . . . 
Idle prefix - 
State manip. prefix 
If expression 
Let expression 
Agent instantiation 
Choice 
Parallel composition 
Restriction 
Relabeling 
Null agent 

idle due @ - . . 
u(statement) 0 . . + 
if condition then . . . else . . . 
let var = value in . . - 
A( value) 
behaviour $ behaviour 
behaviour 1 behaviour 
behaviour \ {labels} 
behaviour[reZabeZing] 
null 

Figure 3: MTCCS concrete syntax examples 

state manipulation. It specifies a VDM-SL statement 
that manipulates the state of the agent in which the 
construction appears. 

The If expression enables conditional behaviour 
specification steered by data conditions. The Let 
enables local value bindings, either fixed or loose. E.g. 
in 

let t = 3 in d(z) 

the value 3 is bound to the identifier x in a determi- 
nistic way. In 

let x = (let v E 1,2,3} in v)in d(z) 

it is not deterministically decided what the value of 
the expression bound to c will be. It may be either 
1, or 2 or 3. Depending on the context of the ex- 
pression the choice is made in specification time or-in 
execution time. The Agent domain describes parame- 
terized agent instantiation, like d(x). The next four 
domains describe standard CCS operators. The choice 
construction enables nondeterministic selection of spe- 
cific behaviour. 

The Choice, Par, Restrict, and Relabel domains 
model the standard CCS constructs. The first specifies 
non-deterministic choice between behaviours, while the 
other three are used to model parallelism and commu- 
nication. 

The Null construction denotes the passive agent 
null. Wait and Delay are two core syntax domains 
without a concrete syntax counter part. They are in- 
termediate forms, used to give meaning to the passing 
of time. 

The semantics of MTCCS consists of two compo- 
nents; an operational semantics of the process part, 

and a denotational semantics of the data manipula- 
tion part. The exact form of the data manipulation 
part of MTCCS is not discussed in this paper, but 
can be found in [l]. To be able to define the operatio- 
nal semantics of the process part, only the ‘interface’ 
between the two semantics needs to be defined. 

A labeled transition system M : (S, SO, 23, R) cor- 
responding to an MTCCS specification consists of a 
set of states S, an initial state se E S, a set of la- 
bels C, and a transition relation R. A state (B, p, v) E 
(BExpr x EnvT x Store) consists of three components, 
an MTCCS behaviour expression B, a local definitions 
valuation p, and a state valuation v. 

EnvT and Store are defined as follows. 

Env, Store = Id % Vu1 

EnvT = EnvT . EnvT 1 Env 

A local definitions environment p E EnvT is tree of 
environments, patterned after the process structure of 
the corresponding global state. As can be seen from 
the semantics rules given below, every parallel compo- 
sition causes the local environment to split! creating a 
local environment for each subprocess. A choice may 
also cause the local environment to split, but this is 
only temporary. The reason for this is that some ac- 
tions do not resolve the choice, but do already change 
the local environments of the components of the choice. 
There is one global state environment v E Store, which 
is shared by all subprocesses. 

A transition relation R C S x C x S is a set of 
transitions (s, I, s’) , where Z E C is a transition label. 
The set of transition labels E is defined as follows: 

l Z!vaZ, Z?val E (dctld x VuZ): external actions 
l y: Visible internal actions (as a consequence of in- 

ternal communications and state manipulations) 
l L: Invisible internal actions (as a consequence of 

evaluation of expressions in IdZe, AgentIf and Let 
constructions, and expansion of environments in 
Choice and ParComp expressions. These actions 
do not resolve Choices. 

l e(b), 6 E Iwl”: Time actions 
The interface between the operational semantics and 

the denotational semantics consists of two components; 
the evaluation of state manipulations, and the evalu- 
ation of value expressions. This interface is realized 
by the semantical function eval which is defined as fol- 
lows: 

eval : 
i 

Statement -+ (EnuT x Store -+ Store)-set 
VExpr + (EnvT x Store + VuZ)-set 

2The dual rule is not shown 
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Idle2 I (Wuit(d,B),p,v)~:!(~ait(d--,B),p,v), d>b 

Idle3 (Waitfd, B), p,v) "2 (B, p, v) 

ActDelayl (act,p,v) i (Delay(act,O),p,v) act E (InAct(-,-,-,-), UutA~ct(-,-,-,-)I 

Figure 4: Semantics of MTCCS 

In the case of a state manipulation, the semantical 
function takes a Statement and returns a set of (seman- 
tical) state transformers. A state transformer takes 
a local environment and a state environment and re- 
turns a new state environment. In the case a value 
expression ( VBcpr) is evaluated a set of evaluators is 
returned. Each evaluator takes a local and a state en- 
vironment and returns a value. 

An environment that holds the bindings of process 
identifiers to behaviour expressions is left implicit in 
the semantic rules. This environment is assumed to 
be created by the Spec rule and is used in the Agent 

rule. In the latter the existence of a function Agent : 

Procld 3 (BEqw x V&-Id) is assumed. 
For clarity we will use only single values in input 

actions, output actions, let constructions, and value 
parts. The extension to more complex expressions is 
straightforward and does not have any consequences 
for the discussions presented here. 

3 Requirement specification 

The requirement specification notation is intimately 
associated with the approach taken for verification, in 
our case model checking. The temporal logics traditi- 
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