
Modeling and analysis of complex computer
- the MTCCS approach -

systems

Hans Toetenel, Ronald Lutje Spelberg, Sylvia Stuurman, Jan van Katwijk
Faculty of Technical Mathematics and Informatics

Delft University of Technology
132 Julianalaan, 2628 BL Delft, The Netherlands

Abstract

The paper presents results from work in progress on
finding a method for formal specijication and verifica-
tion of real-time concurrent systems that incorpomte a
non trivial data component. We have extended Timed
CCS, a timed CC.9 variant with a model-oriented data
language based on VDM. The semantics of the exten-
sion, called MTCCS is expressed in a combination of
denotational and operational style. We show how veri-
fication of temporal logic properties based on symbolic
model checking can be made possible for
bination notation.

such a com-

1 Introduction and overview

Complex computer systems are frequently highly
concurrent, distributed and often have real-time pro-
perties. Since Leveson [14] had pointed out that
modeling and analysis form the main challenges in
building complex real-time systems much research has
been carried out in the field of formal specification.
The underlying theory of formal specification techni-
ques has been investigated thoroughly and can be re-
garded as relatively mature. At the same time, tools
have been developed that facilitate construction and
analysis of formal specifications. The benefits of the
use of formal specification languages are clear. They
provide a concise framework within which software
requirements and designs can be expressed unambi-
guously. The resulting specifications are more suited
for analysis and verification.

Figure 1 schematically depicts relationships between
notations and tools we use in a notational framework
for formal system modelling, analysis and implemen-
tation.

MTCCS, (Model-oriented Timed Calculus of Com-
municating Systems) is a formal specification language
aimed at defining real-time concurrent systems with a

system specification
notion

requirement speoificarion
notation

implementation technique verification technique

Figure 1: Notational Framework

non-trivial data component. It is based on Timed CCS
[23], a timed version of process algebra notation CCS
[16] and VDM-SL i [8], the specification notation of
the VDM methodology [5], [13].

To express properties of MTCCS specifications we
us a real-time temporal logic based on TCTL 121.

The conceptual model is based on a structural inte-
gration of denotational semantics and structural opera-
tional semantics (DESOS) . In this approach the overall
semantic style is operational. In the definition of the
transition rules semantic functions are applied which
are defined by denotational semantic definitions. Both
MTCCS and RFO-TCTL are given a DESOS seman-
tics.

The implementation of MTCCS specifications is ba-
sed on SYM-UN, a distributed tree based commu-
nication protocol for basic CCS implemented in the
Java language. Its definition and implementation of

‘The specification language for VDM for which an IS0
standard is currently being developed (IS0 SC22/WG19/N-20).

423

Proceedings of the 2nd IEEE International Conference on Engineering of Complex Computer Systems (ICECCS '96)
0-8186-7614-0/96 $10.00 © 1996 IEEE

the SYM-UN protocol are omitted from this paper.
Our method for verifying property specifications is

based on model checking, which allows verification of
temporal logic properties in a highly automatic man-
ner.

The remainder of this paper is organized as follows.
In section 2 an overview is presented of the MTCCS.
Section 3 introduces the notation for requirement spe-
cification RFO-TCTL. Section 4 is dedicated to verifi-
cation. It summarizes our approach to model-checking
MTCCS specifications with respect to properties ex-
pressed in the RFO-TCTL notation. Fimally section
5 presents a discussion of our results sofar, compares
our approach to related work and projects our work
into the future. It is assumed that the reader is more
or less acquainted with VDM-SL. Throughout this pa-
per VDM-SL is used to specify syntactic and semantic
domains and semantic functions.

2 The MTCCS notation

This section introduces shortly the syntax and se-
mantics of MTCCS. For a more comprehensive des-
cription of the language, see [15]. MTCCS is a suc-
cesor to a syntactic and semantic framework based on
the same combination of VDM-SL and TCCS, called
MOSCA [22]. Th e aim of the development of MOSCA
was to increase the applicability of VDM in the area of
distributed, parallel and real-time systems. It has been
given various forms of semantics. The current form of
the MTCCS semantics is strongly based on the first
semantics for MOSCA given in [21]. The main dif-
ferences between MOSCA and MTCCS are the more
precise definition of the state component of MTCCS
and the particular approach to model the looseness as-
pect of VDM-SL within the operational semantics of
MTCCS.

A MTCCS specification describes four aspects of
systems of communicating processes: their data-
containment, their functional behaviour, their process-
structure and their behaviour in time. Associated with
these aspects are the following MTCCS constructions :
data type and state definitions, functions and operati-
ons on data, agent definitions, and timed actions. The
basic structuring element in the MTCCS model of a
system is a process, called agent. The action sequence
associated with an agent is called its behaviour.

The core syntax of the process component of
MTCCS is defined by the abstract domains given in fi-
gure 2. It forms the base syntax on which the MTCCS
semantics are defined. The core syntax of VDL-SL is

omitted in this paper. The full definition of the core
syntax of VDM-SL can be found in [I].

Spec: : Behaviovr : ProcId -% (BExpr x V&Id)

State : ProcId -? (Vurld < Type))
Init : BExpr

BExpr = InAct 1 OatAct 1 Idle 1 StateMen 1 Let 1 If 1
Agent 1 Choice 1 Par 1 Restrict / Relabel 1 Null
Wait 1 Delay

InAct : : label : ActId OutAct :: label : ActId
mvc~r : VarId mval : VExpr
dvar : Yarld dvar : VarId
cant : BExpr cant : BExpr

Idle : : durval : VExpr StateMan : : man : Statement
cant : BExpr cant : BExpr

Let :: var : VarId If : : cond : VExpr
val: VExpr cant : BExpr
cant : BExpr alt : BExpr

Agent : I name : ProcId Choice:: left : BExpr
val : [VExpr] right : BExpr

Par : : left : BExpr Restrict:: res : Id-set
right : BExpr cant : BExpr

Relabel:: cant : BExpr

rel : ActId -% ActId

Wait :: timer : IF!>’ Delay : : act : InAct
cod : BExpr delay : IR~o

1 OutAct

Figure 2: MTCCS Core syntax

The core syntax domain V,&pr denotes all value
expressions defined by the VDM-SL part of MTCCS.
It offers basic types like natural numbers (N), inte-
gers (Z), reals (lw), booIeans (B), product and union
types, record types optional types, function and ope-
ration types. Further it offers complex data structu-
ring facilities based on set types, sequence types and
map types. It features subtyping through type inva-
riants. Some concrete syntax constructions to spe-
cify the behaviour of agents are shown in Figure 2.
The core domain Spec holds the information of defi-
ned agent behaviours (Behaviour), global state com-
ponents (State), and the behaviour associated with the
specification (Init). The first four behaviour expres-
sion domains InAct, OutAct, Idle, and State&fan form
the prefix expressions. The first two prefix behaviour
expression domains, InAct and OutAct are the timed
prefixes of TCCS. The third prefix domain describes
the idle prefix of TCCS, which expresses time progres-
sion. The fourth prefix domain handles the infusion of

424

Proceedings of the 2nd IEEE International Conference on Engineering of Complex Computer Systems (ICECCS '96)
0-8186-7614-0/96 $10.00 © 1996 IEEE

Construction Typical example
Timed in prefix action(variable) * var 0 . - -
Timed out prefix action(vaZue) * var Q . . .
Idle prefix -
State manip. prefix
If expression
Let expression
Agent instantiation
Choice
Parallel composition
Restriction
Relabeling
Null agent

idle due @ - . .
u(statement) 0 . . +
if condition then . . . else . . .
let var = value in . . -
A(value)
behaviour $ behaviour
behaviour 1 behaviour
behaviour \ {labels}
behaviour[reZabeZing]
null

Figure 3: MTCCS concrete syntax examples

state manipulation. It specifies a VDM-SL statement
that manipulates the state of the agent in which the
construction appears.

The If expression enables conditional behaviour
specification steered by data conditions. The Let
enables local value bindings, either fixed or loose. E.g.
in

let t = 3 in d(z)

the value 3 is bound to the identifier x in a determi-
nistic way. In

let x = (let v E 1,2,3} in v)in d(z)

it is not deterministically decided what the value of
the expression bound to c will be. It may be either
1, or 2 or 3. Depending on the context of the ex-
pression the choice is made in specification time or-in
execution time. The Agent domain describes parame-
terized agent instantiation, like d(x). The next four
domains describe standard CCS operators. The choice
construction enables nondeterministic selection of spe-
cific behaviour.

The Choice, Par, Restrict, and Relabel domains
model the standard CCS constructs. The first specifies
non-deterministic choice between behaviours, while the
other three are used to model parallelism and commu-
nication.

The Null construction denotes the passive agent
null. Wait and Delay are two core syntax domains
without a concrete syntax counter part. They are in-
termediate forms, used to give meaning to the passing
of time.

The semantics of MTCCS consists of two compo-
nents; an operational semantics of the process part,

and a denotational semantics of the data manipula-
tion part. The exact form of the data manipulation
part of MTCCS is not discussed in this paper, but
can be found in [l]. To be able to define the operatio-
nal semantics of the process part, only the ‘interface’
between the two semantics needs to be defined.

A labeled transition system M : (S, SO, 23, R) cor-
responding to an MTCCS specification consists of a
set of states S, an initial state se E S, a set of la-
bels C, and a transition relation R. A state (B, p, v) E
(BExpr x EnvT x Store) consists of three components,
an MTCCS behaviour expression B, a local definitions
valuation p, and a state valuation v.

EnvT and Store are defined as follows.

Env, Store = Id % Vu1

EnvT = EnvT . EnvT 1 Env

A local definitions environment p E EnvT is tree of
environments, patterned after the process structure of
the corresponding global state. As can be seen from
the semantics rules given below, every parallel compo-
sition causes the local environment to split! creating a
local environment for each subprocess. A choice may
also cause the local environment to split, but this is
only temporary. The reason for this is that some ac-
tions do not resolve the choice, but do already change
the local environments of the components of the choice.
There is one global state environment v E Store, which
is shared by all subprocesses.

A transition relation R C S x C x S is a set of
transitions (s, I, s’) , where Z E C is a transition label.
The set of transition labels E is defined as follows:

l Z!vaZ, Z?val E (dctld x VuZ): external actions
l y: Visible internal actions (as a consequence of in-

ternal communications and state manipulations)
l L: Invisible internal actions (as a consequence of

evaluation of expressions in IdZe, AgentIf and Let
constructions, and expansion of environments in
Choice and ParComp expressions. These actions
do not resolve Choices.

l e(b), 6 E Iwl”: Time actions
The interface between the operational semantics and

the denotational semantics consists of two components;
the evaluation of state manipulations, and the evalu-
ation of value expressions. This interface is realized
by the semantical function eval which is defined as fol-
lows:

eval :
i

Statement -+ (EnuT x Store -+ Store)-set
VExpr + (EnvT x Store + VuZ)-set

2The dual rule is not shown

425

Proceedings of the 2nd IEEE International Conference on Engineering of Complex Computer Systems (ICECCS '96)
0-8186-7614-0/96 $10.00 © 1996 IEEE

Idle2 I (Wuit(d,B),p,v)~:!(~ait(d--,B),p,v), d>b

Idle3 (Waitfd, B), p,v) "2 (B, p, v)

ActDelayl (act,p,v) i (Delay(act,O),p,v) act E (InAct(-,-,-,-), UutA~ct(-,-,-,-)I

Figure 4: Semantics of MTCCS

In the case of a state manipulation, the semantical
function takes a Statement and returns a set of (seman-
tical) state transformers. A state transformer takes
a local environment and a state environment and re-
turns a new state environment. In the case a value
expression (VBcpr) is evaluated a set of evaluators is
returned. Each evaluator takes a local and a state en-
vironment and returns a value.

An environment that holds the bindings of process
identifiers to behaviour expressions is left implicit in
the semantic rules. This environment is assumed to
be created by the Spec rule and is used in the Agent

rule. In the latter the existence of a function Agent :

Procld 3 (BEqw x V&-Id) is assumed.
For clarity we will use only single values in input

actions, output actions, let constructions, and value
parts. The extension to more complex expressions is
straightforward and does not have any consequences
for the discussions presented here.

3 Requirement specification

The requirement specification notation is intimately
associated with the approach taken for verification, in
our case model checking. The temporal logics traditi-

426

Proceedings of the 2nd IEEE International Conference on Engineering of Complex Computer Systems (ICECCS '96)
0-8186-7614-0/96 $10.00 © 1996 IEEE

onally used in model checking are propositional logics,
since these technique abstract from the data domain
by associating with each state a set of atomic propo-
sitions true in that state. Since our model does incor-
porate a state, we will use a first order logic, in our
case an extension of TCTL (Timed Computation Tree
Logic) [2] called RFO-TCTL (Restricted First-Order
TCTL). The logic is called restricted because quanti-
fication over temporal operators is not allowed, which
makes our extension quite straightforward. Atomic
propositions are simply replaced by boolean expres-
sions from our data manipulation language. The fol-
lowing grammar defines the syntax of RFO-TCTL:

where z, zr, 22 range over a set of specification clocks,
and cl, cg E IIZz”. p ranges over the set of (boolean)
expressions of our data manipulation language. p is
satisfied if the valuation of the store satisfies the bool-
ean value expression p. A(& U&) is satisfied if for
all computation paths starting from the current state,
there is a state along it which satisfies 42, and until
that time 91 is satisfied. E(& U&) is satisfied if there
is at least one such computation path. t.# is satis-
fied by the current state if 4 is satisfied by the state
obtained from the current state by introducing a new
specification clock z which is set to zero. lo is satisfied
if the values of the specification clocks satisfy $. Some
derived operators are: EF+ (There is path on which
there is state satisfying 4), EG4 (There is a path of
which every state satisfies 4), AF4 (On all paths there
is some state satisfying b), AGd (On all paths every
state satisfies 4). A more detailed description and a
formal semantics can be found in [ZO].

As an example z.EF(p~z < 1) expresses that there
is within one time unit a future state which satisfies p.
A G(z. (p + (AFq A z < 2)) expresses that whenever
some state satisfies p, then q is always satisfied within
2 time units.

4 Verification

To verify MTCCS specifications we apply modeE
checking, an algorithmic approach to verification that
allows fully automatic verification of temporal logic
propertie specifications. In the verification of real-
time and hybrid systems, symbolic (real-time) model
checking techniques [12, 191 have been quite succesful.
These model checking approaches work on representa-

tions that in two ways different from our MTCCS for-
malism Firstly these representations are graph-based
formalisms like for example timed automata. Secondly,
symbolic model checking techniques operate on global
models instead of compositional models.

Our verification method is therefore based on a two-
phased approach to verification of MTCCS specificati-
ons. First, the compositional MTCCS specification is
translated to a global graph-based representation, and
subsequently model checking is applied. This approach
has already been followed for translating several real-
time process algebras without data to timed automata
variants [l’i’, 91. However, these are relatively straight-
forward techniques as they translate a process alge-
bra specification by fully expanding its control space.
We combine the transformation from a process algebra
specification to a graph representation with a reduc-
tion technique to obtain smaller intermediate models,
reducing the complexity of the subsequent symbolic
model checking step. The intermediate graph repre-
sentation, called XTGraphs (extended timed graphs)
is a variant of timed automata enhanced to symboli-
cally represent data components. The expansion pre-
serves the properties of our requirement specification
language RFO-TCTL, so that the resulting model can
be used for model checking purposes.

Timed automata [4] are finite state transition graphs
equipped with a finite set of continuous clocks all run-
ning at the same rate. Transitions may reset clocks and
are guarded by means of clock constraints referring to
current values of the clocks. XTGraphs are timed au-
tomata further extended with capabilities to operate
on data, by adding data manipulations and data cons-
traints to transitions, and adding sorts to locations.

An XTGraph is a tuple (S, se, T, X , E) , where

l S is a set of Locations, with initial location so
l T : S + Sort assigns a sort to each location
l X is a set of clocks
l E is a set of edges: E c S x S x L x U x C

where L is a set of action labels, C the set of cons-
traints on clocks and data, and U set of state updates
(clocks resets and data manipulations). The semantics
of time is somewhat different from that of the timed
automata variants usually used in model checking. We
focus on verification of closed MTCCS specifications.
In such a specification an enabled action is always
performed immediately (that is, without letting time
pass). This is reflected in the semantics of our XT-
Graphs representation: Time may only pass in some
location if none of the outgoing transitions are enabled.
Other timed automata variants do not force the execu-

427

Proceedings of the 2nd IEEE International Conference on Engineering of Complex Computer Systems (ICECCS '96)
0-8186-7614-0/96 $10.00 © 1996 IEEE

tion of transitions in this way. Timed safety automata
[12] for example equip locations with clock constraints,
to force the execution of transitions. Restricting our-
selves to defining closed systems does not reduce the
expressiveness of MTCCS, since the non-deterministic
environment that comes with an open system can ea-
sily be modeled by MTCCS processes.

The XTGraph given in figure 5 corresponds to the
example system given in specification ?? in section 2.
Note that this is not a complete XTGraph, since it
does not model a closed system (the time and reset
actions are external). We constructed a transla-

c:=cl
Reading:=0

Reading:=Reading +I
[C=I]

Figure 5: Example XTGraph

tion from MTCCS to XTGraphs that results in an
XTGraph that exhibits exactly the same behaviour as
the original MTCCS model. This translation invol-
ves full expansion of the paralellism present in the
specification, introducing an exponential explosion in
the size of the state space. The expansion of paral-
lel processes introduces many different interleavings
whose distinction is irrelevant since they satisfy the
same RFO-TCTL specifications. That is why we ex-
tended our transformation with a reduction technique,
which is based on partial order model checking tech-
niques [II, 18, lo].

Figure 6: Reduction

For many states of a system it is safe to only con-
sider a subset of all its outgoing transitions and suc-
cessor states, rather than all of them, avoiding unne-
cessary enumeration of trivially different interleavings.

Reduction is based on the fact that if two states s and it
successor S’ have the same ‘observed’ behaviour, then
it suffices to consider only the transition a leading from
s to s’, ignoring all other transitions outgoing from s
(see figure 6). The ‘ignored’ transitions can then safely
be postponed to the next state. Whether or not two
states have the same observed behaviour is dependent
of the property specification to be verified. The partial
expansion is based on a depth first search algorithm.
During transformation, in each state the possible out-
going transition are examined, but instead of interpre-
ting each transition as an edge in the graph model,
transitions are omitted if possible.

Consider a simple example fragment defined by the
following behaviour expression:

C(E: = 4) @ idle(2) 0 ‘i(c) 0.. 1
. (let u = SomeValue in (a(y) * t 0 .. .

@ idle(u) 0 cr(y: = 0) 0 . . -)

The corresponding XTGraph is given in figure 7.
(Cl and C2 are clocks, d and e are variables intro-
duced by the transformation). When applying only

Figure 7: Full and partial expansion

a partial expansion, an XTGraph is constructed that
only contains the solid-lined transitions and locations.
Even for this simple example a considerable reduction
is achieved.

428

Proceedings of the 2nd IEEE International Conference on Engineering of Complex Computer Systems (ICECCS '96)
0-8186-7614-0/96 $10.00 © 1996 IEEE

5 Discussion

We described MTCCS, a forma1 language for defi-
ning real-time concurrent systems with data. Like for
example LOTOS [6], MTCCS is founded on a com-
bination of a process algebra with a data description
formalism. In these process algebras, data is treated
in different manner. There an environment is created
that keeps track of substitutions introduced by input
actions and local definitions. Our approach exphcitiy
models the state of a system. One advantage of this ap-
proach is that it has become possible to use shared data
structures. The fact that MTCCS allows shared data
has some consequences for the its semantics. If shared
data were not allowed, a number of semantics rules
could be simplified, significantly reducing the number
of L actions in the resulting transition system. The L
actions associated with the idle, let, and if constructs
would be superfluous. It may seem that this intro-
duces a lot of redundancy in the model but most of
these actions can simply be optimized away, either di-
rectly, or indirectly by means of reduction techniques
discussed below. Note that by omitting the state com-
ponent and the state manipulation prefix, one arrives
at a value-passing based model.

The time model of MTCCS is based on that of
Timed CCS, which is a simple but effective way to
model timed behaviour. The fact that MTCCS also
incorporates data, increases the power of our time mo-
deling constructs. It allows for exampIe the expression
of intervals in delays, and dealing with elapsed time
values as normal data values.

To describe data manipulations we use VDM-SL.
The work described in this paper is to a great extend
independent of this choice. Any data manipulation for-
malism could be used, as long as it adheres to the same
interface.

We showed that for a process algebra like MTCCS it
is possible formally derive a graph baaed model that
can be used for verification purposes. This work is
part of research efforts aimed at arriving at a specifi-
cation and verification strategy for MTCCS specifica-
tions, based on model checking. The main challenge in
applying model checking is in avoiding the state space
explosion. An optimal model checking strategy focu-
ses on reducing all three sources of this state space ex-
plosion; interleaving of parallel processes, timing, and
data. Figure 8 presents an overview of what we think
such a strategy could look like. Our work is based
on a two-phased approach to verification of MTCCS
specifications. First, the compositional MTCCS spe-
cification is translated to a global graph-based repre-
sentation, and subsequently model checking is applied.

The transformation defined in this paper serves as a
basis for development of more sophisticated techniques
that intend to avoid the explosion that comes with the
expansion of parallelism [20]. The expansion defined
here fully expands the control space of the composi-
tional process algebra specification. We are currently
working on combining the transformation with reduc-
tion techniques, resulting in considerably smaller inter-
mediate models, reducing the complexity of the subse-
quent model checking step. This partial expansion will
use two reduction techniques. The first [20] is based
on partial order model checking techniques [lo, 181.
We currently working on a second reduction technique
baaed on exploiting symmetry present in system spe-
cifications.

The final step in this overview is where symbolic
model checking is applied. An example of such a tech-
nique is symbolic real-time model checking [12], which
focuses on timing aspects and data aspects in the form
of linearly changing continuous variables [3]. Our in-
tention is to also apply these symbolic techniques to the
other kinds of data components. For complex data as-
pects the application of symbolic techniques may very
well not be feasible. For that reason we envision a
data abstraction step which simplifies the data com-
ponent of a system so that symbolic model checking
becomes possible. The disadvantage of such abstrac-
tion techniques [7] is that it requires complex human
involvement in finding the proper abstractions, which
destroys the mechanic character of the model checking
approach. However, for certain classes of systems, the
use of abstraction techniques seems inevitable. Data-
intensive systems are very hard to deal with using only
the discussed automatic model checking techniques.

The partial expansion technique is focused on redu-
cing the complexity on the control space of the system.
As a next step we interested in attacking the other two
sources of complexity, timing and data, by applying
symbolic model checking techniques [12, 3, 191 to our
reduced XTGraph models.

At present we have developed the mentioned partial
expansion technique, and are in the process of imple-
menting it in a tool.

References

[l] Vdm-sl, first committee draft standard: Cd 13817-
1. Technical report, ISO/IEC/JTCl/SCP2/WG 19,
November 1993.

[2] R. Alur, C. Courcoubetis, and D. Dill. Model-checking
in dense real-time. Information and Computation,
104:2-34, 1993.

429

Proceedings of the 2nd IEEE International Conference on Engineering of Complex Computer Systems (ICECCS '96)
0-8186-7614-0/96 $10.00 © 1996 IEEE

I31

c41

L51

I51

PI

181

PI

W I

w

El21

Cl31

MTCCS
specification B

-data expansion
-data abstraction

J4 symbolic
Parfial expansion model checking

XTGraph w
-partial order reduction with respect to
-exploi&g symme* -time

-data

Figure 8: Overview of the verification approach

R. Alur, 6. Courcoubetis, N. Halbwachs, T. A. Hen-
zinger, P. H. Ho, X. NicolJin, A. Ohvero, J. S&&s,
and S. Yovine. The algorithmic analysis of hybrid sys-
tems. Theoretical Computer Science, 138:3-34, 1995.

R. Alur and D. Dill. The theory of t imed automata.
In Proceedings REX workshop on Real-Time: Theory
and Practice, volume 600 of Lecture Notes in Compu-
ter Science, pages 45-73. Springer-Verlag, 1991.

D. Bjorner and C.B. Jones. Formal Specification #
Software Development. PHI. Prentice Hall, 1982.

T. Bolognesi and E. Brinksma. Introduction to the iso
specification language lotos. In P.H.J. van Eijk, CA.
Vissers, and M. Diaz, editors, The Formal description
Technique LOTOS, pages 23-77. North Holland, 1989.

E. M. Clarke, 0. Grumberg, and D. E. Long. Model
checking and abstraction. ACM Transactions on Pro-
gramming Languages and Systems, 16(5):1512-1542,
1994.

J. Dawes. The VDM-SL Reference Guide. Pitman,
1991.

C. Daws, A. Ohvero, and S. Yovine. Verifying ET-
LOTOS programs with KRONOS. In Proceedings of
the 7th International Conference on Formal Descrip-
tion Techniques, pages 227-242. Chapman and Hall,
1995.

R. Gerth, R. Kuiper, D. Peled, and W. Penczek.
A partial approach to branching time logic model
checking. In Proceedings of the Third Israel Sym-
posium on Theory of Computing and Systems, pages
130-139. IEEE Computer Society Press, 1994.

P. Godefroid and P. Wolper. A partial approach
to model checking. Information and Computation,
110:305-326, 1994.

T. A. Henzinger, X. Nicollin, J. S&&is, and S. Yo-
vine. Symbolic model checking for real-time systems.
Information and Computation, 111:193-244, 1994.

C.B. Jones. Systematic Software Development Using
YDM, 2-nd edition. PHI. Prentice Hall, 1990.

430

P41

P51

W I

PI

PI

cw

W I

PI

PI

[231

N.G. Leveson. The challence of building process-
control software. IEEE Software, pages 55-62, No-
vember 1990.

R. F. Lutje Spelberg, S. Stuurman, and W. J. Toe-
tenel. MTCCS. Technical report, Delft University
of Technology, Faculty of Technical Mathematics and
Informatics, 1996. In preparation.

R. Milner. Gommunication and Concurrency. PHI.
Prentice Hall, 1989.

X. Nicollin, J. Sifakis, and S. Yovine. From atp to
timed graphs and hybrid systems. Acta Informatica,
30:181-202, 1993.

D. Peled. Combining partial order reductions with
on-the-fly model-checking. In Proceedings 6th Inter-
national Conference on Computer Aided Verification,
CAV’g.& volume 8~3 of Lecture Notes in Computer
Science, pages 377-390. Springer-Verlag, 1994.

0. V. Sokolsky and S. A. Smolka. Local model
checking for real-time systems. In Proceedings 7th In-
ternational Conference on Computer Aided Verifica-
tion, CAV’95, volume 939 of Lecture Notes in Com-
puter Science, pages 211-224. Springer-Verlag, 1995.

R. F. Lutje Spelberg and W. J. Toetenel. Partial
expansion of real-time process algebra specifications
with data into extended timed automata. Technical re-
port, Deli? University of Technology, Faculty of Tech-
nical Mathematics and Informatics, 1996.

W.J. Toetenel. Model Oriented Specification of Com-
municating Agents. PhD thesis, Faculty of Techni-
cal Mathematics and Informatics, Delft University of
Technology, 1992.

W.J. Toetenel. VDM + CCS i- TIME = MOSCA.
In Proceedings of the 18th workshop of IFIP/IFAC
WRTP’92. Brugge, 1992.
Y. Wang. Real-time behaviour of asynchronous
agents. In J.C.M. Baeten and J.W. Klop, editors,
CONCUR ‘90 Theories of Concurrency: Unification
and Extension, volume 458 of LNCS, pages 502-520.
Springer Verlag, 1990.

Proceedings of the 2nd IEEE International Conference on Engineering of Complex Computer Systems (ICECCS '96)
0-8186-7614-0/96 $10.00 © 1996 IEEE

