
OPEN UNIVERSITY OF THE NETHERLANDS

MASTER THESIS

8 MAY 2018

Improve software design understanding

Ivan Timmers

supervised by
Dr. ir. H. PASSIER

Dr. ir. S. STUURMAN

CONTENTS

List of Figures iv

Summary vi

Samenvatting viii

1 Introduction 1
1.1 Context & Scope . 3

1.1.1 Software design . 3

1.2 Thesis overview . 3

2 Research method 4
2.1 Introduction . 4

2.1.1 Validation context. 4

2.2 Research method . 5

2.3 Research questions . 5

2.4 Validation . 6

2.4.1 Scope . 6

2.4.2 Validation method . 6

2.5 Research contributions. 7

3 Background 8
3.1 2D visualization . 8

3.1.1 Problem area 2D visualization . 9

3.2 3D visualization . 10

3.2.1 Why 3D? . 10

3.3 Software metrics . 11

3.4 Combine UML and metrics . 13

3.5 Functional requirements. 13

4 Software prototype 15
4.1 Functional requirements. 15

4.2 Constrains . 16

4.3 Technical implementation. 16

4.3.1 Importing XMI. 16

4.3.2 3D UML class diagram . 17

4.3.3 Navigation controls . 20

4.3.4 Filtering. 20

4.3.5 Combining UML and code metrics . 24

ii

CONTENTS iii

5 Validation results 25
5.1 Results . 25

5.1.1 Functional requirements . 25
5.1.2 Visualization . 25
5.1.3 Code metrics. 27
5.1.4 Navigation . 28
5.1.5 Filtering. 29
5.1.6 Combine metrics . 31

6 Conclusions and future work 33
6.1 Conclusions . 33

6.1.1 Main research question . 35
6.2 Future work. 35

6.2.1 3D UML. 35
6.2.2 2D UML. 36
6.2.3 Metrics . 36
6.2.4 Added value study . 36

Bibliography 37

Appendices 39

A XMI file example 39

B 3D UML conversion results 46
B.1 Jabberpoint result 1 . 46

B.1.1 Diagram 1 . 46
B.1.2 Diagram 2 . 49
B.1.3 Diagram 3 . 51

B.2 Jabberpoint result 2 . 53
B.3 Jabberpoint result 3 . 55

LIST OF FIGURES

3.1 Large 2D UML class diagram . 9
3.2 3D UML . 10
3.3 Metaball metaphor . 11
3.4 Codecity metaphor . 12
3.5 Landscape metaphor . 12
3.6 MetricView example . 13

4.1 Sample UML diagram . 17
4.2 Sample UML diagram . 18
4.3 Treemap algorithm example . 19
4.4 Metric example 1 . 19
4.5 Metric example 2 . 19
4.6 Navigation example 1 . 20
4.7 Navigation example 2 . 21
4.8 Navigation zoomed in . 21
4.9 Filter by name . 22
4.10 Filter by interface . 22
4.11 Filter by stereotype . 22
4.12 Filter by selected entity . 22
4.13 UML diagram with change . 23
4.14 3D UML with change within 2 versions . 23
4.15 3D UML from example . 24
4.16 Associated metric . 24

5.1 2D UML diagram assignment 1-1 . 26
5.2 3D UML diagram assignment 1-1 . 26
5.3 3D Metric assignment 1-3 . 27
5.4 Validation 3D UML navigation 2D diagram . 28
5.5 Validation 3D UML navigation 1 . 28
5.6 Validation 3D UML navigation 2 . 28
5.7 Validation 3D UML navigation 3 . 29
5.8 3D UML unfiltered . 29
5.9 Validation 3D UML filtered . 30
5.10 Validation 3D UML abstract filter . 30
5.11 2D UML with factory entities . 30
5.12 Validation 3D UML unfiltered . 31
5.13 Validation 3D UML stereotype filtered . 31
5.14 2D UML unfiltered . 32
5.15 Validation 3D UML filtered . 32
5.16 Validation 3D UML metric . 32

iv

LIST OF FIGURES v

B.1 2D UML diagram assignment 1-1 . 46
B.2 3D UML diagram assignment 1-1 . 47
B.3 3D Metric diagram assignment 1-1 . 47
B.4 3D Metric UML combination assignment 1-1 48
B.5 2D UML diagram assignment 1-2 . 49
B.6 3D UML diagram assignment 1-2 . 49
B.7 3D Metric diagram assignment 1-2 . 50
B.8 3D Metric UML combination assignment 1-2 50
B.9 2D UML diagram assignment 1-3 . 51
B.10 3D UML diagram assignment 1-3 . 51
B.11 3D Metric diagram assignment 1-3 . 52
B.12 3D Metric UML combination assignment 1-3 52
B.13 2D UML diagram assignment 2 . 53
B.14 3D UML diagram assignment 2 . 53
B.15 3D Metric diagram assignment 2 . 54
B.16 3D Metric UML combination assignment 2 . 54
B.17 2D UML diagram assignment 3 . 55
B.18 3D UML diagram assignment 3 . 55
B.19 3D Metric diagram assignment 3 . 56
B.20 3D Metric UML combination assignment 3 . 56

SUMMARY

Problem The last decade, software projects increased significantly in size. It becomes
increasingly difficult to comprehend the software. Understanding the structure of the soft-
ware can be hard and time consuming. Design documentation is often available but most
of the time out of date and obsolete. Many software engineers rely therefore on software
visualization tools that help in software understanding. In combination with the initial
documentation the intent of the software can become clear.

When software becomes larger, the traditional visual tools for displaying software de-
sign contain issues.

• The UML visualization technique does not scale well with large diagrams. The di-
agrams become cluttered with information like entities and relationships. Also 2D
inheritance trees create space filling diagrams that are hard to read.

• Layout techniques with 2D entities are hard. With large diagrams the numbers of
lines and crossings can grow very quickly.

• Navigation tool like pan-zoom and overlapping windows cause for getting lost in de-
tail. The overlapping windows causing discontinuity problems.

• Different diagrams are created for the same project. Consistency is often lost.

Vision Our vision is to improve the understandability of software design. We acknowl-
edge that this is a long-term vision, which should not be considered lightly. Our short-term
vision however is to deliver a software tool that shows how software design understand-
ability can be improved. We believe that 3D techniques and the coupling of source-code
metrics to UML class diagrams can contribute to our vision.

Method We created a prototype software tool that implements possible answers to the
problems mentioned above. The problems are divided into three domains: visualization,
navigation and filtering. For each of these domains we implemented solutions in our soft-
ware tool. To make the added value visible we compared existing documentation with the
documentation generated by our tool. We had the opportunity to use student exercises
that was already examined by tutors. We compared the results from the first rating with the
rating based on our software tool.

Techniques To improve the visualization we implemented a way to convert existing 2D
UML diagrams to 3D. We use the XMI exchange format to load the UML elements in a
3D engine created with Unity. The UML elements are visualized in 3D. Besides the UML

vi

vii

model we made it possible to add source-code information in a 3D metric view. The metric
information is combined with the UML diagram.

Navigation controls are implemented to navigate through the model. We implemented
controls as found in Computer Aided Design software. Filtering options are added, for ex-
ample, filtering by name or type. The coupling with the source-code metrics is made. In-
teresting elements in the metric view are highlighted in the UML diagram and vice verse.
Also a filter based on changes in the UML diagram is created.

Results Based on the validation results we can conclude that the conversion of 2D UML
to 3D UML diagrams does not directly give added value. But when combining the UML
diagrams with source-code metric information in 3D the added value can clearly be seen.
When validating the results from the students, focus points where identified which were
not seen with the traditional 2D UML class diagrams.

SAMENVATTING

Probleem De laatste decennia zijn software projecten voortdurend gegroeid in grootte.
Het wordt steeds moeilijker om de software te doorgronden. Het begrijpen van de structuur
van de software is vaak moeilijk en tijdsintensief. Ontwerp-documentatie is vaak beschik-
baar maar deze is meestal verouderd. Veel software engineers vertrouwen hierom op soft-
ware visualisatie tools die helpen om de software te begrijpen. In combinatie met de docu-
mentatie kan de structuur en werking van de software duidelijk worden. Wanneer software
projecten groter worden, bevatten de traditionele visuele tool die software-ontwerpen vi-
sueel maken problemen:

• De UML visualisatie techniek schaalt niet goed met grote diagrammen. De diagram-
men zien er rommelig uit met veel informatie zoals entiteiten en relaties. Ook 2D
overerving-structuren nemen erg veel plaats in die moeilijk te lezen zijn.

• Efficiënte lay-out technieken met 2D elementen zijn lastig. Voor grote diagrammen
kunnen de aantal lijnen en lijn kruisingen erg hard groeien.

• Navigatie technieken zoals pan-zoom en overlappende vensters zorgen ervoor dat de
gebruiker verdwaald in de details van het diagram. Overlappende vensters veroorza-
ken daarnaast discontinuïteit problemen.

• Verschillende diagrammen worden gemaakt voor hetzelfde project. Consistentie gaat
hierdoor vaak verloren.

Visie Onze visie is om de begrijpelijkheid van software ontwerp te verbeteren. We erken-
nen dat dit een lange-termijn visie is, die niet lichtvaardig moet worden beschouwd. Onze
korte termijn visie is daarom om een software tool op te leveren die laat zien hoe de soft-
ware begrijpelijkheid van worden verbeterd. Wij geloven dat 3D technieken en de koppel-
ing van source-code metrieken aan UML klasse diagrammen kunnen bijdragen aan onze
visie

Methode We hebben een prototype software tool ontwikkeld die mogelijke antwoorden
implementeert op de problemen zoals hierboven beschreven. De problemen zijn opgedeeld
in drie domeinen: visualisatie, navigatie en filteren. Voor elke van deze domeinen hebben
we oplossingen geïmplementeerd in onze software tool. Om de toegevoegde waarde zicht-
baar te maken hebben we bestaande documentatie vergeleken met de documentatie gegenereerd
door onze tool. We hadden de kans om opdrachten van studenten te gebruiken die al waren
beoordeeld door docenten. We hebben de resultaten vergeleken van de eerste beoordeling
met de beoordeling gebaseerd op onze software tool.

viii

ix

Technieken Om de visualisatie te verbeteren hebben we een manier geïmplementeerd
om bestaande 2D UML diagrammen te converteren naar 3D. We hebben gebruik gemaakt
van het XMI uitwisseling-formaat om de UML elementen in een 3D engine te laden gemaakt
in de Unity omgeving. Naast het UML model hebben we het mogelijk gemaakt om source-
code informatie toe te voegen in een 3D metrieken overzicht.

Navigatie mogelijkheden zijn geïmplementeerd om door het model te navigeren. Deze
mogelijkheden kunnen ook gevonden worden in Computer Aided Design software. Filter
opties zijn toegevoegd, zoals filteren op naam of type. Ook koppeling met de source-code
metrieken is geïmplementeerd. Interessante elementen in het metrieken overzicht worden
benadrukt in het UML diagram en andersom. Ook is er een filter toegevoegd gebaseerd op
veranderingen tussen verschillende versies van het UML diagram.

Results Gebaseerd op de validatie resultaten kunnen we concluderen dat de conversie
van 2D UML naar 3D UML diagrammen niet direct een toegevoegde waarde geeft. Wanneer
de UML diagrammen gecombineerd worden met de source-code metrieken in 3D, wordt
de toegevoegde waarde wel duidelijk zichtbaar. Met het valideren van de resultaten van
de studenten, werden aandachtspunten duidelijk geïdentificeerd die niet duidelijk konden
worden gezien met de traditionele 2D UML klasse diagrammen.

1
INTRODUCTION

Throughout a software product‘s life cycle, many people should be able to understand the
software code. Learning the structure of software code is hard and can be time consuming.
When design documentation is available this can help, but however, after several mainte-
nance cycles these documents tend to be out of date and are often obsolete. Many software
engineers therefore rely on software visualization tools that help in software understand-
ing. In combination with the initial documentation, the intent of the software can become
clear.

Documentation During the development phase of a software program several techniques
are used to document the software, as for example, behavioral diagrams such as call-graphs,
or models like UML diagrams. Graphical languages like this provide users with a higher
level of abstraction of the software [1]. Together with the software metrics the documenta-
tion holds a lot of information about the software code. Users have access to different tools
that contain different data. Code metrics are used to say something about the quality of the
software, while for example UML domain diagrams describe architectural information.

UML class diagrams For software design, UML diagrams are widely used to document
software. One of the diagrams specified by the UML standard is the class diagram. This
diagram is used during and after the requirements phase to model the domain logic, and
also as design model. The use of 2D diagrams is suggested in the literature [6] to provide a
higher level of abstraction of the software under investigation. The purpose of these tools
is to enable the user to comprehend structure and relationships through visual mappings.

Problems These mapping tools however, have limitations when dealing with large di-
agrams. Although UML diagrams have advantages in comparison to a situation without
visualization, UML visualizations have shortcomings. Especially when dealing with large
software projects the current visualization techniques tend to be difficult to comprehend
due to various reasons [13, 14, 5]. The following reasons can be identified for dealing with
a difficult to comprehend documentation technique. These reasons are further described
in chapter 3.

1

2 1. INTRODUCTION

• The UML visualization technique does not scale well with large diagrams. The di-
agrams become cluttered with information like entities and relationships. Also 2D
inheritance trees create space filling diagrams that are hard to read [14, 13].

• Layout techniques with 2D entities are hard. With large diagrams the numbers of
lines and crossings can grow very quickly [14, 13].

• Navigation tool like pan-zoom and overlapping windows cause for getting lost in de-
tail. The overlapping windows causing discontinuity problems [14, 13].

• Different diagrams are created for the same project. Consistency is often lost [14, 13].

Several papers offer solutions for visualization systems that help understanding a com-
plex system [14, 13, 17]. These solutions mostly cover the metric visualizations and re-
verse engineering techniques. Metric information gives quality information of aspects of
the source-code. These information must be manually mapped to the domain model. This
introduces a new problem with the current visualization techniques:

• Source-code information must be manually mapped to the domain model.

3D visualizations can help overcome the first three problem areas as described above.
It creates a physical object, a visual, that represents the software system and gives software
engineers insight on the complex software structure. Previous work has shown that, for at
least UML state diagrams, 3D visualization prove useful [11]. We claim that 3D visualization
can be useful for other types of visualization to improve the software understandability.

The consistency problem cannot be solved with 3D visualization and is not investigated
in this research project.

Vision Our long-term vision about software visualization is to come with a solution to
improve software understanding with 3D visualization of UML class diagrams and metric
information. Class diagrams give information about the design, but no information about
how the software functions in code. The combination will be made between UML class
diagrams and software metrics to combine the results from both worlds into one view. One
single view for design and for code quality.

In short-time we will come with a prototype software tool that proves that the long-term
vision can be realized technically speaking. To do this we divide the 2D UML problems in
the following area‘s to solve [8]:

• Visualization

• Navigation

• Filtering

These problem area‘s are discussed in chapter 3

1.1. CONTEXT & SCOPE 3

1.1. CONTEXT & SCOPE

This research focuses on visualization techniques of UML class diagrams and metrics visu-
alization. UML class diagrams are used by software engineers in a UML domain diagrams
and in a UML design diagram. Several software development processes make use of the
UML class diagrams during one or more phases [7].

The visualization techniques are used by software engineers to get insights in the soft-
ware code. These users possible profit from the solution proposed in this research.

Education The validation of the research will take place within the higher education field.
In education, and especially software engineering, a lot of software designs has to be cre-
ated and rated by instructors. Getting insight in the design is an important component
when examining a design. Our software tooling will help the instructor and the student to
get better insight in their designs and add information about the quality of the design with
metrics.

Scope Dynamic software behavior described in dynamic UML diagrams like sequence
diagrams are not part of this research. A prototype tool will be developed that uses 3D
techniques to overcome the problem areas of 2D UML class diagrams and combine them
with software metrics. Two metrics are used to demonstrate the prototype: number of
attributes and number of methods in a class.

1.1.1. SOFTWARE DESIGN

Most of the time software design work during the analysis and design phase is done with
UML diagrams. After the requirements for the current iteration a domain model is cre-
ated with a UML class diagram notation. When dealing with UML class diagrams, with the
current tools there is no connection between the UML class diagram and the code met-
rics. Code metrics tooling is often used in collaboration with the UML class diagrams for
references. Our research focuses on the software design phase.

When a change is made in a UML class diagram it can be hard to see what the impact
is on the quality of the source-code. An extra feature of the 3D prototype tool that we de-
veloped during this research is that it is possible to compare 2 UML diagrams for changes.
The changes are clearly shown on screen. The current metrics are shown with the UML
diagram. This makes it possible to see the impact of changes from the UML class diagram
to the code quality with metrics.

1.2. THESIS OVERVIEW

The following topics are covered in this master thesis. Chapter 2 describes the research
method and the method that is used to validate the research questions. Chapter 3 provides
an overview of the literature about problems with 2D visualizations, 3D UML representa-
tions and software metrics in a background section. Chapter 4 shows the results of the soft-
ware tool that is created. In chapter 5 the validation results are discussed. The last chapter
contains the conclusions of this research and proposals for future work.

2
RESEARCH METHOD

This chapter describes the research method used and the validation procedure.

2.1. INTRODUCTION

To break down our long-term vision, to improve software understanding with 3D visual-
ization, into smaller steps we did research a piece of the complete puzzle. We call this the
short-term solution.

This first step in this short-term solution will deliver a prototype tool that shows that it
is possible to use 3D techniques for displaying UML class diagrams and metrics. With the
results we can answer a piece of the long-term question. Future work can continue with
these results to come with a complete solution.

To answer the research questions a prototype software tool is created. This is necessary
to verify the claims done in this paper. To validate the added value of this tool and thus the
added value of this research a validation procedure has been created. The course “Design
Patterns” within the software engineering master on the Open University will be used as
validation context.

2.1.1. VALIDATION CONTEXT

During the master program “Software engineering” on the Open University one of the courses
is about software design patterns. A substantial part of this course is to refactor an existing
Java application called “Jabberpoint” to an application that makes use of design patterns.
The students work in a group of 2 on the same assignment.

We had the opportunity to use existing results of some student teams as input for our
software prototype tool. As of this moment students delivering results in the form of UML
class diagrams drawn in different tools with a lot of documentation and the complete Java
source code. These UML diagrams are a lot to handle for the instructors of the course.
Sometimes it can be difficult to see if an UML class diagram is correct or not without deeply
examine the files and combine the UML class diagrams with the source code. At the mo-
ment the software metrics are not included in the examination of the results of the students.

4

2.2. RESEARCH METHOD 5

The results are already rated by the instructors based on the 2D UML class diagrams.
We take the examined work and convert the diagrams and source-code with our prototype
tool and deliver a 3D representation of the same work. This way we could examine the
difference in perceptions of the quality of the results.

2.2. RESEARCH METHOD

The goal of this research is to deliver a prototype tool that can be used to get information
about UML class diagram designs. This tool can be used in addition to 2D UML tools to re-
trieve extra information about the software design. That makes this research a constructive
research: a prototype is made and tested.

2.3. RESEARCH QUESTIONS

The research goal is to prove that 3D techniques with UML have an added value to existing
2D UML representations. The goal is to make the software design phase more easy to un-
derstand.
The research question is:

How can we add value to software understanding with 3D techniques?

Sub-questions are:

• How can 3D, compared to 2D, help by understanding software design?

• How can navigation controls be implemented in 3D UML class diagrams?

• How can filter possibilities be implemented in 3D UML class diagrams?

• How can source-code metrics be combined with 3D UML class diagrams?

Method First, to answer the questions, we conduct a literature study of different visu-
alization techniques for UML and metrics. The result of this study is a set of rules about
transferring from 2D to 3D and the current difficulties with 2D UML diagrams.

Also more insight is gained about the current problems with 2D UML diagrams and
the research sub-questions are formed on basis of this study. The results of the pre-study
are used as a base to create a prototype to investigate how the research questions can be
answered.

The research question that must be answered cannot be measured in the form of a met-
ric. For example, the added value of the software tool can be expressed by the degree of
information overload. But this cannot be measured and is highly dependent of the person.
Therefore the validation is done by examining the added value of the software prototype
tool within the context as described above. The validation procedure will be done by dif-
ferent persons to check for consistency.

We chose this validation method because of the current state of the software that we
developed. The software is developed as prototype. This makes the tool unsuitable to test

6 2. RESEARCH METHOD

with a group of test persons. First the useability must be improved. The validation method
as described is compact and is expected to grant usable results.

2.4. VALIDATION

2.4.1. SCOPE

The validation method focuses on our short-term goal: creating a prototype tool that proves
the described problems in section 1 can be solved, technically speaking. We limit the scope
therefore to create a prototype tool with the following functions:

• Display a 3D UML design class diagram.

• Intuitive navigation controls.

• Multiple filtering options.

• Visualize metrics.

• Combine metrics with UML class diagrams.

Useability requirements are not included in this research.

2.4.2. VALIDATION METHOD

The expectation about the prototype software tool is that 2D UML diagrams visualized in
3D increase the understanding of the diagram. With the help of software metrics, it should
be easier for the instructor to make a decision about the quality of the work of the student.
The method that we used is to take different submitted assignments of students and con-
vert them to a format our software tool can handle. This includes:

• Remake the 2D UML diagrams in a UML tool and export the diagram to XMI format.

• Extract the software metrics from the source code.

• Import the XMI file in the 3D software tool.

• Position the 3D UML entities in a 3D world.

• Import the software metrics as 3D city metaphor coupled to the 3D UML diagram.

This is done for 3 different projects. The result of this transition is a 3D workspace with
the 3D UML diagram and the metric information. The resulting workspace is given to the
instructors of the course and they write down their findings about this tool. Alongside with
our own findings, the research questions can then be answered.

When validating, the differences must be addressed between examining the results of
the student with the 2D diagrams and the 3D conversions. The following aspects are im-
portant:

• Is the positioning of the 3D entities found convenient?

2.5. RESEARCH CONTRIBUTIONS 7

• Is the metric information of added value in addition to the UML class diagram?

• Does the navigation techniques implemented helps with understanding the model?

• Do the navigation problems reduce with 3D diagrams?

• Do the filtering techniques help to emphasize key areas of the model without losing
track?

• Does the coupling between metrics and the UML class diagrams help by identifying
problem area‘s?

• Are the same amount of faults found when examining the 3D results as with the 2D
results?

The results of the validation procedure can be used to answer the research questions.

2.5. RESEARCH CONTRIBUTIONS

The current research area focuses on displaying technical qualities of the software code-
base with help of code-metrics to reverse-engineer the software properties. Not often this
is related to the design phase in software to cross-link the metrics information with the
design information.

The first contribution of this research is to deliver a method to transfer existing 2D UML
diagrams into a 3D representation. The UML notation is preserved in 3D space, as the UML
entities are converted to 3D counterparts. In the 3D space these entities can be moved to a
position that is most valuable for the viewer. Because of the 3D space more entities can be
displayed then in the 2D space with less line-crossings. Also some of the navigation prob-
lems can be solved. This work has been done before [11, 5], but we make use of a modern
standard 3D engine that has a great performance boost over the engines used before. The
use of a standard engine will also make it easier to extend in the future.

Second, to make the bridge to the code-base, a way is implemented to read an existing
source-code file and extract the metrics. These metrics can be displayed as a variant of the
codecity metaphor. The codecity is also displayed in 3D and a relation will be set between
the 3D UML and the 3D codecity. This makes it possible to highlight different parts of
the software in the design view and highlight the corresponding parts in the metric view.
Additionally the differences between the design and code are made visible, to be able to
verify if the code complies with the design.

Although we found one research about the coupling of UML and metrics [15], this is a
different approach as our research. We combine the added value of metric metaphors and
3D UML designs, instead of viewing 3D metric representations on 2D UML diagrams. The
expectation is that the time to understand a software design will greatly improve due to the
coupling of both domains.

Overall, the short-term contribution is a prototype tool that transforms existing 2D
UML class diagrams and source-code to a 3D UML class diagram with a codecity metric
view. This gives insight in how the long-term solution, improve software design under-
standing, might be solved. The coupling of metric information to 3D UML diagrams has
not been done before.

3
BACKGROUND

Here, we give an overview of the background of software visualizations.

3.1. 2D VISUALIZATION

In software design, UML class diagrams are often used to visualize software design [10, 14,
5, 11]. Also other forms of 2D visualization have been suggested [1]. These diagrams pro-
vide users with a higher abstract view of the software. The main goal is to simplify program
comprehension with diagrams that enable the user to comprehend complex internal struc-
ture and relationships. This is done by visual mapping. These 2D mapping tools however,
have limitations when dealing with large diagrams. Although 2D diagrams have advantages
in comparison to a situation without visualization, 2D visualizations have shortcomings
[14, 13, 5].

• UML class diagrams do not scale well with more complex designs. The diagrams
become cluttered with information. Also, 2D inheritance trees create large diagrams
that are hard to read.

• The task to create a clear layout techniques for 2D class diagrams is hard. With larger
diagrams, the numbers of lines and crossings grows very fast.

• The use of navigation tools like pan-zoom and overlapping windows, that are needed
with large diagrams because it would be impossible to read a class diagram on a
screen otherwise, causes the user to get lost in details. Overlapping windows cause
discontinuity problems.

• Several diagrams may be created for the same project. Consistency is often lost, when
not using a tool that automatically checks for consistency.

Software applications become increasingly complex and large. Therefore, having a vi-
sualization technique that scales with the size of the diagrams becomes more important.
Figure 3.1 shows an example of a large UML class diagram of a real-world example. As can
be imagined, the larger the diagram, the more difficult it is to understand the diagram.

8

3.1. 2D VISUALIZATION 9

Figure 3.1: Large 2D UML class diagram

It is also more difficult to find a clear layout for large diagrams. Large diagrams contain
more entities and more relationships, which increases the chance of line crossings, which
make the diagram less readable. A solution is to split the diagram into multiple pages and
switch between them, but this can confuse the reader [11]. Also, it is harder to maintain
consistency without the support of a tool that automatically checks for inconsistency

3.1.1. PROBLEM AREA 2D VISUALIZATION

The problems we sketched can be divided into three categories [8]:

Visualization Large, complex diagrams are often subdivided into more diagrams, that
can be viewed in several windows (open in tabs). It is difficult to understand large complex
diagrams this way. For example, large diagrams can have several hundreds of references in
the hierarchy. One sub-component can be referenced by several other components. This is
not visible in 2D without continuously switching between windows.

Navigation Often in 2D UML tools one diagram is visible per window, which puts limits
on the navigation through the hierarchy. This ensures that a user always has to switch
back and forth between different views. This limits the comprehension of complex models
[8]. This is indicated as “one easily can loose overview of the model, not remembering
the structure and design of the model”. These results support the facts that 2D navigation
techniques lack in supporting the user with memorizing the model.

Filtering Information overload can occur by users of current 2D UML tools due to the lack
of filtering possibilities. Complex diagrams cannot be dynamically filtered to only show the
parts of the diagram that the user is currently interested in.

The next section describe how 3D techniques can be used to overcome these problems.

10 3. BACKGROUND

3.2. 3D VISUALIZATION

3D visualizations can help overcome the problem areas as described above. It creates a
physical object, a visual, that represents the software system and gives software engineers
insight on the complex software structure.

3.2.1. WHY 3D?

The first question rises is why convert 2D to 3D? The use of 2D diagrams is suggested in
the literature [6] to provide a higher level of abstraction of the software under investigation.
The purpose of these tools is to enable the user to comprehend structure and relationships
through visuals mappings. Despite 2D diagrams add a lot more comprehension this is less
the case for large systems. It becomes increasingly difficult to comprehend large diagrams
due to the reasons mentioned in section 1 on page 1

Visualization techniques as 2D UML class diagrams use abstract models that represent
concrete software source-code. A model is thus used to represent code. This is called a
metaphor. A metaphor is used to understand one specific thing using the terms of an-
other thing [4]. For example an UML class diagram uses squares for classes that repre-
sents concrete entities. Additional the coupling between code entities is modeled with line
metaphors.

Figure 3.2: 3D UML

In the last two decades, programs have become larger and more complex. Programmers
tend to have increasing difficulties to visualize these complex and large code structures. A
few pre-defined views may not be sufficient when dealing with very large structures. Also
not every visualization technique can display all aspects of the software in the best way [12].
This is why we conducted a research to the use of 3D instead of 2D. In the literature often
3D visual representations are suggested as a solution to help overcome these problems[11,
5, 14, 13].

There are surveys that clarify the use of 3D techniques for displaying software diagrams
at least with state diagrams to bring advantages [11]. But not only in state diagrams, the

3.3. SOFTWARE METRICS 11

advantages of 3D are initially obvious. The amount of information perceived is increased
with a certain factor [5]. For example in hierarchical or layered structure, components of
the same level implies linear display in 2D consuming a lot of space. In 3D such data can
be laid out on a plane in the third dimension.

But this is only the case if effective use is made of the added dimension. Most of the
current approaches are just transforming 2D visualization techniques into a 3D space. Al-
though the use of 3D offers a greater working area, also they introduce readability issues.
Problems that might be introduced by 3D visualization techniques include objects being
obscured, disorientation and spatial complexity. To some extend these issues can be solved
by interaction techniques that change the viewpoint of the 3D graph within the diagram.
Otherwise the 3D representation is just limited to a 2D picture of a 3D structure. An exam-
ple of a 3D technique used with no added value to 2D can be seen in figure 3.2

3.3. SOFTWARE METRICS

What is a software metric? In literature, software measure, software measurement and soft-
ware metrics are often used interchangeably. IEEE does provide the following definition:
“The application of a systematic, disciplined, quantifiable approach to the development, op-
eration, and maintenance of software; that is, the application of engineering to software.”.

The use of metrics has been common use in the software engineering world. It has been
shown that software metrics can improve understandability of a design and code. Software
metrics also contribute to its future maintainability. [2]

In software visualization many examples can be found where metaphors are used [17,
13]. In figure 3.3 an example can be seen where a 2D UML diagram is transferred to a 3D
picture with the use of a metaphor. The purpose here is to display specific parts of the
software metrics like coupling and cohesion.

Figure 3.3: Metaball metaphor

12 3. BACKGROUND

The metaphor used in this example is called “Metaball” metaphor. The researchers dis-
tinguished two types of metrics, Cohesion (internal aspects) and Coupling (structural as-
pects). This research shows that added value is gained by combining different domains in
one overview.

Another metaphor mentioned in the literature is the codecity metaphor. This metaphor
describes the software metrics with the help of a city metaphor. Two kinds of metrics are
taken into account: number of attributes (NOA) and number of methods (NOM). The NOA
is used to define a building surface. The NOM defines the building height. See for an ex-
ample figure 3.4. The prototype software implements a variation of this city metaphor.

Figure 3.4: Codecity metaphor

Landscapes are also mentioned as a possible metric metaphor [9]. An example of the
landscape metaphor can be seen in figure 3.5. The authors claim that since software has
no physical shape, there is no ”natural“ mapping of software to a two-dimensional space.
A consistent layout can be generated from the software metric that allows users to develop
a variety of thematic software maps that express very different aspects of software while
making it easy to compare them. Landscapes allow users to achieve a consistent view off
the software. The shape of the landscape is formed by the lexical similarity of the source
code. The height of the hills are calculated with the KLOC (thousands of lines of code)
metric.

Figure 3.5: Landscape metaphor

3.4. COMBINE UML AND METRICS 13

3.4. COMBINE UML AND METRICS

UML class models are usually created and used as an interactive modeling tool. Metrics on
the other hand are effective for analyzing large system architectures. Metrics can answer
complex questions that cannot be answered with UML class diagrams. To reduce the cog-
nitive disruption caused by switching between multiple views, it is desirable to combine
the domains of UML class diagrams and metrics in one view.

At least one research has been done on the combination of UML class diagrams with
metric information [15]. A tool called “MetricView” is essentially an UML visual tool that
adds highly customizable metric visualizations. A given UML class diagram and a set of
metrics can be combined in one view. An example can be seen in figure 3.6

Figure 3.6: MetricView example

The research shows promising results for combining both the strengths of UML class di-
agrams and metric data. Our prototype software tool presented in the next section contin-
ues on their conclusion that the combination of UML class diagrams and metric informa-
tion is an added value over the existing visualization techniques. Because the visualization
technique of the UML class diagram in “MetricView” does not include a 3D representation,
our research did implement a 3D variation of the UML class diagram and a 3D metric view.

3.5. FUNCTIONAL REQUIREMENTS

Based on this background study possible requirements are formulated. The next chapter
will continue on the requirements that are implemented in this research with a prototype
software tool.

The functional requirements are the requirements that came forth of our research-goal.
The goal is to improve UML class diagram visualization. We think that 3D diagrams are
a part of the solution to the problems. We only focus on the functional requirements in
this research study. The prototype software tooling must meet the following functional
requirements:

1. XMI format must be supported for importing UML diagrams.

14 3. BACKGROUND

2. A UML class diagram must be displayable in 3D.

3. Convenient 3D navigation controls must be implemented.

4. It must be possible to display code-metric information in 3D.

5. Different filter possibilities must be implemented to filter the UML entities.

6. It must be able to combine 3D Metric information with the UML class diagram.

These functional requirement are explained in detail in the next chapter.

4
SOFTWARE PROTOTYPE

To answer the research questions, a prototype tool is developed. This tool is able to im-
port an existing 2D UML diagram in the XMI format and converting the diagram into a
3D representation. Navigation controls are implemented to inspect the model. Also filter-
ing options are implemented In 3.1.1 on page 9 problems with 2D UML class diagrams are
mentioned. The software tool is developed with these problems in mind and is presented
in the next section.

4.1. FUNCTIONAL REQUIREMENTS

Not all functional requirement from 3.5 on page 13 are implemented in the prototype tool.
This section gives an overview of the implemented functional requirements and how this
is realized.

The functional requirements that we have implemented for our short-term goal is based
on the current problems for 2D UML class diagrams. The problems are here mentioned
again:

• UML class diagrams do not scale well with more complex designs. The diagrams
become cluttered with information. Also, 2D inheritance trees create large diagrams
that are hard to read.

• The task to create a clear layout techniques for 2D class diagrams is hard. With larger
diagrams, the numbers of lines and crossings grows very fast.

• The use of navigation tools like pan-zoom and overlapping windows, that are needed
with large diagrams because it would be impossible to read a class diagram on a
screen otherwise, causes the user to get lost in details. Overlapping windows cause
discontinuity problems.

• Several diagrams may be created for the same project. Consistency is often lost, when
not using a tool that automatically checks for consistency.

15

16 4. SOFTWARE PROTOTYPE

The first and second problem is tackled by implementing 3D UML diagrams to increase
the scalability and drawing space. Also filter possibilities are implemented to help the user
to filter out irrelevant data. The filter options include an option to view the source-code
metrics with the UML data to filter the software design on the basis of source-code metrics.

The third problem is solved by implementing navigation tools in 3D. This allows the
user to explore the model in an extra third dimension that removes the overlapping win-
dows.

The inconsistency problem is not solved in the research.

4.2. CONSTRAINS

For this prototype there has been chosen for certain tools and programs to work with. This
section gives an motivation about the choices.

• ArgoUML
ArgoUML has been chosen as UML modeling tool. This tool is able to generate XMI
files. XMI stands for XML Metadata Interchange. The format of XMI is maintained by
the Object Management Group. XMI describes a XML-format, which can be used to
exchange data of UML-diagrams between tools. Although XMI is a standard, a XMI-
file generated by ArgoUML cannot be read, for example, by the UML modeling tool
Visual Paradigm. The XMI-file is processed by a XML parser which is created using
the .NET Framework.

• Unity and C#
Unity is chosen as 3D engine to create the tool. Unity is a cross-platform game en-
gine, which is primarily used to develop video games and simulations for computers,
consoles and mobile devices. Unity uses C# as scripting language. C# runs on the
Microsoft .NET framework. We had previous experience with Unity and C#, therefore
there has been chosen for these techniques to develop the tool with.

4.3. TECHNICAL IMPLEMENTATION

This section describes how the functional requirements from section 3.5 are implemented
in the prototype tool. For demonstrating purposes we use a simple non-functional UML
diagram that is shown in figure 4.1

4.3.1. IMPORTING XMI

The creating of UML diagrams is not a part of this research. Therefore, to help users by
understanding software design we developed a possibility to import existing 2D UML dia-
grams.

ArgoUML diagrams can be exported to XMI files. We created an .NET Dynamic Link
Library (DLL) to handle the import function. A DLL is used because of the reuse possibility
in the visualization software. An example of the XMI file of the UML diagram in figure 4.1
can be seen in appendix A.

4.3. TECHNICAL IMPLEMENTATION 17

Figure 4.1: Sample UML diagram

First, the XMI XML elements are loaded in an internal class structure that describes the
different UML entities. We focus only on: classes, interfaces, usages, abstractions, associa-
tions, generalization and packages. When a relationship contains stereotypes like “create”
or “realize” these are also imported.
The outputs of the DLL method can be used in the 3D engine Unity to create 3D models.
The models are loaded in a 3D space and are positioned next to each other. For the proto-
type, the 3D positioning has to be done by hand to achieve the best readable layout.

4.3.2. 3D UML CLASS DIAGRAM

The software we developed is able to visualize an imported UML class diagram model hi-
erarchy. It is also possible to visualize only a specific part of the model, where the user
can select what parts should be visualized. Only UML class diagrams are supported at the
moment, but this can be extended with other diagrams.

The UML entities are converted to 3D with the UML drawing conventions in mind. The
software draws the connection lines between the entities that represent different associa-
tions with the 2D drawing conventions in mind. This means dashed connecting lines in 2D
are also drawn in 3D by a dashed 3D connecting line. The arrowheads are also converted
according to the UML conventions. A sample can be seen in Figure 4.2

CODE METRICS

With the software tool, code metrics can be visualized by extracting source-code informa-
tion. The source-code information is displayed with a metaphor.

The metric visualization is based on the existing codecity implementation [17]. The
most important metrics used in this implementation are the number of attributes and the
number of methods. The prototype software implements the same metrics. The number of
methods as height parameter, and the number of attributes as length and width parameter.

Our software uses a simpler version of the codecity metaphor as UML packages are not

18 4. SOFTWARE PROTOTYPE

Figure 4.2: Sample UML diagram

included in the extraction of metrics. As a results all software classes are extracted to a
flattened hierarchy. The software is prepared to support different metrics in the future but
this was out of scope for this project.

We have chosen for this metaphor because of the appealing visual view and the rela-
tive easy implementation. The basic metrics that we support are good supported by this
metaphor. We think that this metaphor enables the user in the best way to quickly see the
code-quality aspects without overwhelming the user with visuals.

The ordering of the buildings is done with the squarified treemap algorithm that is dis-
cussed in the next section.

Squarified Treemaps The buildings in the city metaphor are ordered in a squared treemap
pattern. An implementation of an existing treemap algorithm is used [3]. This algorithm
calculates the treemap in a way that the space that is reserved for an item in the treemap
is always the best fitted square. This makes the presented visualization more readable and
better to comprehend. A downside of this squarification technique is that the relative or-
dering of siblings is lost and images tend to be less regular, with less standard patterns, than
standard treemaps. When the structure of the treemap is important and the ordering is not,
this method is very useful. A visual explanation of the algorithm can be seen in figure 4.3

In our software tool the ordering of metrics is not important, but the structure. We are
interested in the metrics of individual components and not their mutual relationships. This
makes it an ideal candidate for the squared treemap implementation.

The squared treemap algorithm is chosen because of the readability of the obtained
metrics. The algorithm is created in a DLL and added to the 3D visualization. This made
it possible to create 3D codecity implementations from any kind of source-code as long as
it is supported by the tool. Figure 4.4 and figure 4.5 show different examples from source-
code representations displayed as codecity metaphor.

4.3. TECHNICAL IMPLEMENTATION 19

Figure 4.3: Treemap algorithm example

Implementation The prototype software tool has implemented different ways to extract
code metrics from existing projects. The scope is limited to these two import possibilities
of source code metric. The prototype tool is able to extend the possibilities in future work.

• Reading and extraction information from .NET DLL and EXE files.

• Reading code metric information from a file created with Eclipse.

Figure 4.4: Metric example 1 Figure 4.5: Metric example 2

20 4. SOFTWARE PROTOTYPE

4.3.3. NAVIGATION CONTROLS

The navigation problem is about how the comprehension of the model can be improved
by navigation techniques. One of the navigation problems of 2D UML class diagrams is the
limitation that often only one diagram can be viewed per window [8]. Constant switching
is required to maintain an overview. The software tool we developed has multiple solutions
to counter this navigation problem.

First the navigation controls are implemented as used in modern computer aided de-
sign (CAD) programs like panning, zooming and rotating. These controls are common in
the engineering field, and are widely used in 3D video games. This allows the user to navi-
gate through the complete 3D model without losing focus.

Due to the fact that the 3D diagram can use more drawing space than the 2D variant,
the complete model can be viewed without going to the next page that hides a part of the
model. 3D navigation makes it also possible to see the 3D model from different viewpoints.
Previous work has shown that navigating around the model in 3D adds significantly to un-
derstanding the data [16]. In figure 4.6 and figure 4.7 an example can be seen of the same
diagram from different viewpoints.

Figure 4.6: Navigation example 1

In figure 4.8 the same diagram is shown but this time zoomed in on a specific part of the
model. The navigation possibilities of a 3D UML diagram enables the user to take different
viewpoint from the same model without leaving the diagram. We believe the context of the
diagram is more preserved this way.

4.3.4. FILTERING

The filtering requirement is implemented to reduce information overload. This is done by
providing the user with different filter possibilities. We have developed different filters for
different UML entities in the diagram. For example, only “create” stereotype tags or only
abstract classes. It is also possible to filter out specific entities. Filtering is all about reduc-
ing information overload and reduce cognitive disruption. To remove the back and forth
navigation between applications the tool also supports a metric-view that is combined with
the UML class diagram. The filtering techniques that are implemented are:

4.3. TECHNICAL IMPLEMENTATION 21

Figure 4.7: Navigation example 2

Figure 4.8: Navigation zoomed in

• Filter by name

• Filter by interface or abstraction

• Filter by stereotype

• Filter by selected entity

• Filter by changes in the design and code

It is possible to filter UML entities by name, or a part of the name. The other 3D elements
are grayed out. Also the connection lines are made invisible to help finding the entities in
a large UML diagram. An example where a filter is applied on the “factory” keyword is seen
in figure 4.9

Filter by interface is able to filter the UML entities that are interfaces. This makes it
possible to quickly see the interfaces in the UML design. The classes that implement the
interface are also highlighted. An example can be seen in figure 4.10

We have also implemented filtering by stereotype. Only a few stereotypes are imple-
mented, but the software is able to extend this to more stereotypes. The software scans
all associations for the selected stereotype and the connected UML classes or interfaces.
All objects will be hidden excepts of these. This makes it possible to filter certain stereo-
types from a larger UML diagram. Figure 4.11 shows an example of a filter on the “create”
stereotype.

When an user wants to inspect a specific UML entity, it is possible to filter only on a spe-
cific class or interface. The class or interface will be selected along with the corresponding
associations and UML entities connected to this association. Only one level of connected
entities is visualized. This filter technique is very useful to check if a specific class imple-
ments all expected interfaces or check which classes implement an interface. An example

22 4. SOFTWARE PROTOTYPE

can be seen in figure 4.12 where the “ProductA” class is selected and all connected entities
are visible while the other entities are hidden from the view.

The software prototype tool supports the filtering methods as described in this section.
This is only a small part what can be done with filtering. The developed software gives an
impression what can be possible with a 3D UML representation.

Figure 4.9: Filter by name Figure 4.10: Filter by interface

Figure 4.11: Filter by stereotype Figure 4.12: Filter by selected entity

VISUALIZE CHANGES

When conducting a change it can be hard for the software engineer to see the impact of the
change on the code-quality. One of the possibilities of the software prototype is to visualize
changes in the UML diagram. Together with the code metrics visualization, the impact of
the design change can be seen. This makes is possible to link a change in the UML design to
code-quality. The software is able to compare two different XMI files that contain the same
design but with possible changes. For each entity in the UML diagram the changes are
shown in the 3D view. This ensures that easily can be seen if and where the UML diagram
contains a change. The following differences are possible to visualize in 3D:

• Missing or added associations

• Missing or added classes or interfaces

4.3. TECHNICAL IMPLEMENTATION 23

Figure 4.13: UML diagram with change

The UML diagram used for comparison is shown in figure 4.13. The UML diagrams are
always compared with the design UML diagram as origin. When an association is missing
in the UML extracted by the code this is shown by a red cross through this line indicating
this line is missing in the code as can be seen in figure 4.14

Figure 4.14: 3D UML with change within 2 versions

The software tool is also able to display changes as text sentences. This gives additional
information besides the visual data. This textual data can be used to monitor differences
between versions in an automated way.

The comparing algorithm is implemented as a basic algorithm which loops through
the UML entities from the initial version and verifies if the compare version contains these

24 4. SOFTWARE PROTOTYPE

entities. When the same name is found the number of connections with other entities is
checked. This way also the differences regarding to the associations are found. Secondly,
the compared XMI is scanned for newly added entities. These entities are identified as new
items and are visible as such in the 3D diagram and textual representation.

4.3.5. COMBINING UML AND CODE METRICS

When a software design is evaluated both conceptual and architecture information is con-
sulted. The UML class diagram is used for evaluating the (object-oriented) design. The
code metrics are used regarding the quality aspects of the source code. This information is
not available in one tool, causing for back and forth switching between applications.

To extend the filter possibilities, the software prototype tool has implemented a way to
combine code metrics with UML class diagrams. This gives two different viewpoints of the
same design. Design and code metrics can be combined to use one technique to examine
the other. These two viewpoints are displayed next to each other and are interacting. An
example: when a specific class in the UML diagram shows a lot of associations, thus in-
dicating a high coupling problem, this object can be selected. The selected entity in the
code metrics view is also highlighted. This makes it possible to directly couple the 3D UML
design information to the metrics information and vice verse. When a code metric entity
is selected, the corresponding 3D UML entity is also highlighted. An example of a 3D UML
diagram and corresponding metric view can be seen in figure 4.15 and 4.16. The green
buildings indicate that the corresponding class is found in the 3D UML diagram. The red
buildings are classes that are available in the metric information, but not in the UML. This
makes it possible to compare different 3D UML diagrams with the same metric informa-
tion.

Figure 4.15: 3D UML from example Figure 4.16: Associated metric

5
VALIDATION RESULTS

In this chapter the validation results are explained.

5.1. RESULTS

This sections shows how the problems mentioned in 3.1.1 on page 9 are addressed by the
software prototype tool. The validation is done with three different results of students that
are handed in as part of the “Design Pattern” course. For each validation aspect a clear
example is taken that emphasizes the prototype tool features. The complete results can be
seen in appendix B.

5.1.1. FUNCTIONAL REQUIREMENTS

The functional requirements from 3.5 on page 13 are fully implemented. These require-
ments are necessary to achieve a prototype tool that makes it possible to conduct research
on 3D visualization of UML class diagrams.

5.1.2. VISUALIZATION

To help reducing problems concerning visualization as described in 3.1.1 on page 9 we
converted 2D UML class diagrams into 3D UML class diagrams. This allowed for more
drawing space due to the third dimension. One of the 2D UML class diagram that is used
for the evaluation process can be seen in figure 5.1 and the 3D UML variant in figure 5.3.

As we did not expect the extra drawing space does not help with the visual understand-
ing of the UML class diagram. The visual complexity has become even greater in 3D then
with the 2D variant. A possible explanation can be that the lines drawn between the UML
entities in 3D are a straight line while the 2D lines have corners. The use of cornered lines is
easier for the visual understandability. This should be an item for future investigation. Also
it depends a lot how the entities are positioned in 3D space. This problem (and solution) is
earlier mentioned [5], but is not implemented in the prototype.

25

26 5. VALIDATION RESULTS

Figure 5.1: 2D UML diagram assignment 1-1

Figure 5.2: 3D UML diagram assignment 1-1

5.1. RESULTS 27

5.1.3. CODE METRICS

The contribution of the metric visualization is validated by examining a result from “Jab-
berpoint”. A 3D metric implemented of the codecity metaphor can be seen in figure 5.3

Figure 5.3: 3D Metric assignment 1-3

It is hard to compare the code metric implementation with the results from the stu-
dents as the student results do not contain metric information. Only the source-code itself
could be used for metrics. We can conclude that the addition of metrics contributes a lot to
the understanding of the assignments. It is possible to identify important or large classes
without consulting the UML diagram or the source-code. This can help to focus on certain
aspects when consulting the UML diagram.

The codecity implementation helps by identifying interesting classes. The fact that
multiple metrics can be seen at the same time contributes to the reduction of visual com-
plexity. In one view the important classes can be seen. The metric information is therefore
definitely of added value in addition to the UML class diagrams.

28 5. VALIDATION RESULTS

5.1.4. NAVIGATION

The added value of the navigation property is validated with the following example:

In figure 5.4 an 2D UML class diagram can be seen. When the user wants to examine
the part within the red square the user is not able to avoid crossing lines. When the user has
the possibility to view the model from different viewpoints in 3D, this is possible, as can be
seen in figure 5.5 and figure 5.6.

Figure 5.4: Validation 3D UML navigation 2D diagram

As can be seen it is possible to navigate through the model to view different contents
of the model. It is not necessary to switch between windows. When a viewpoint is not
suitable, for example due to undesired line crossings, the viewpoint can be altered without
modifying the model. This way for each user the ideal viewpoint can be found.

Figure 5.5: Validation 3D UML navigation 1 Figure 5.6: Validation 3D UML navigation 2

The navigation controls implemented are the same as in CAD design programs. Also the
navigation as implemented is often used in video games. As many software developers are
used to these controls this way of navigating through a 3D UML class diagram feels natural.

For the researchers this way of navigating feels natural and therefore helps by under-
standing the UML model. We find the fact that multiple viewpoints can be taken an added
value over traditional 2D UML diagram navigating techniques. One complete diagram can
be seen without switching between windows with different models that are connected.

5.1. RESULTS 29

When it is necessary to view details it is convenient to zoom in on specific parts of the
model. See also figure 5.7 for a zoomed-in viewpoint of the same model.

Figure 5.7: Validation 3D UML navigation 3

5.1.5. FILTERING

To validate if filtering helps in understanding the UML class diagram, several filter possibil-
ities are implemented. This section presents different filtering techniques implemented in
the software prototype tool. These techniques can help the user to understand the diagram
in a better way.

The first filter technique is filter by name. The 3D UML visualization in figure 5.8 is
used.

Figure 5.8: 3D UML unfiltered

A name-filter with “factory” is applied on the visualization. The result can be seen in
figure 5.9. As can be seen it is very clear which part of the diagram contains a “factory”

30 5. VALIDATION RESULTS

class. This enables to quickly make a selection in the class diagram and focus on the correct
entities.

Figure 5.9: Validation 3D UML filtered Figure 5.10: Validation 3D UML abstract filter

When searching for the UML entities in a 2D UML class diagram without filter possi-
blities it is more difficult to find the entities. The 2D UML class diagram in figure 5.11 is
used.

Figure 5.11: 2D UML with factory entities

To validate the added value of the “abstract” filter we applied the filter to the visualiza-
tion. This filter shows only the “abstract” classes and the connected entities. The result
can be seen in figure 5.10. As can be seen, with a filter the entities are much easier to find
than to manual find the entities in the diagram. Another validation is done with another
diagram.

We applied a filter on a “realize” stereotype. Only the connections between entities with
a realize stereotype are visible with their connected entities. The unfiltered diagram can be
seen in figure 5.12 and the filtered diagram in figure 5.13

The filtering techniques as described help to emphasize key area‘s of the model. The
way the filtering is implemented the outline of the complete model is still visible while the

5.1. RESULTS 31

Figure 5.12: Validation 3D UML unfiltered
Figure 5.13: Validation 3D UML stereotype filtered

filter is active. This way the user does not lose track when applying a filter. We found it
helpful to filter out specific parts of the model.

5.1.6. COMBINE METRICS

An extra feature of the filter possibilities is the possibility to combine software metrics with
a 3D UML class diagram. To show the added value of this function the following example
can be used. In the UML class diagram of figure 5.14 it can be hard to see which UML
classes are the most important or at least the classes that require attention. The diagram is
converted to a 3D diagram and the metric visualization is displayed in the same view.

The results can be seen in figure 5.15 and 5.16. Now it can be easily seen that the
“theme” class requires attention due to the large shape. In one single view it can be seen
that the “theme” class contains the most methods of all classes as the height represents the
number of methods as described in 4.3.2 on page 17

We find that combining the metric information with the UML class diagram enables
to viewer to see “hidden” entities that with only the UML class diagram can easily being
overlooked. With the metric information, the importance (or size) of certain entities can be
identified and the viewer can focus on that specific entity in the class diagram. This saves
a lot of time when determining a UML class diagram correctness. For example, in just one
mouse-click it can be seen which entities are connected to a selected class in the metric
overview.

32 5. VALIDATION RESULTS

Figure 5.14: 2D UML unfiltered

These results show that generally speaking, converting from 2D to 3D UML class di-
agrams without providing extra features does not contribute to the understandability of
the diagram. The results show a potential improvement for understanding software de-
sign with the filter options providing by the software prototype tooling. Additional with the
added metric information these results show that the combination of the two domains help
in understanding the software design.

Figure 5.15: Validation 3D UML filtered Figure 5.16: Validation 3D UML metric

6
CONCLUSIONS AND FUTURE WORK

This chapter describes the conclusion of this research and gives answer to the research
questions.

6.1. CONCLUSIONS

This thesis describes the background, implementation and validation of a software proto-
type tool that is able to convert 2D UML class diagrams to 3D UML class diagrams. The
“XMI” representation of ArgoUML is used. Additionally code metrics are extracted from
source code and displayed as the existing “codecity” metaphor. A coupling is made be-
tween the UML class diagram and the metrics to help the user understand the quality of
the code with the help of metrics.

The overall conclusion is that the software tool is an added value when trying to under-
stand an existing software design. The addition of metrics to the UML class diagram adds
to the understandability. Also it has been shown that plain converting 2D to 3D does not
have added value as the visual complexity is not reduced.

Now the research questions can be answered to conclude this research project.

How can 3D, compared to 2D, help by understanding software design?

The visualization problem is not solved with the developed prototype tool, as has been
shown in section 5 on page 25. The 3D visualization alone does not contribute to the un-
derstandability. For UML class diagrams the spatial complexity is not reduced when adding
a third dimension. Future work should be done on researching alternatives on displaying
3D UML class diagrams that reduces the complexity.

Although the 3D UML class diagrams are not contributing to the understanding of the
design it has been shown that the 3D metric information adds a lot to the understanding of
the design, and especially the quality of the design. With 3D visualization, more than one
metric at the same time can be shown to combine the information given in multiple dia-
grams in 2D to one view in 3D. This enables more possibilities for displaying code-metrics.

33

34 6. CONCLUSIONS AND FUTURE WORK

We implemented a “codecity” metaphor to display metrics. There are several more possible
metaphors to display metrics, this can be done in future work.

Therefore 3D can help by understanding software design but not by simply converting
the 2D UML diagrams to 3D but to add extra information in the form of 3D metrics.

How can navigation controls be implemented in 3D UML class diagrams?

The navigation problem can be solved in 3D by implementing navigation tools bor-
rowed from other fields like computer aided design and video games. These navigation
controls are natural for the user and provide no barrier in exploring the model. The naviga-
tion options enable the user to take different viewpoint of the 3D model. This way, the user
is able to view the model in its own personal best view. Some users might find an overview
better to look at, while other users might like a detailed viewpoint for each entity.

Navigation in 3D helps in reducing the number of diagrams. In 2D one diagram can be
seen at one time. In 3D it is possible to view larger diagrams. The third dimension is used to
break down the model to smaller pieces to focus on. In our prototype tool, it is dependent
on the user how the 3D entities are positioned. Therefore the results can vary depending
on the diagram.

How can filter possibilities be implemented in 3D UML class diagrams?

Filtering can be implemented in various ways. We have implemented filtering by name,
class type, interface and stereotype. This enables the user to quickly make a selection of the
view that the user is interested in. When a filter is enabled the entities that are not in the
filter criteria are faded out. This enables the user to only focus on the filtered entities. The
filter type that we believe will deliver the most added value, is the filter by selected entity.
This filter enables only the selected entity and the relations to this entity.

We found in our validation that filtering helps by identifying possible focus points of the
software. This mainly came from the metric visualization. With the addition of the “filter by
selected” filter possibility is it convenient to identity the corresponding UML entities and
therefore the filter possibilities are an useful addition the UML diagrams.

This work leads to the answer to the following research question:

How can source-code metrics be combined with 3D UML class diagrams?

To answer this question we combined all the problem area‘s solutions to display code
metrics in collaboration with a 3D UML class diagram. This enables the user to quickly
examine an existing software application‘s quality by extraction the source-code metrics.
These metrics are displayed in a 3D view and with one single overview the interesting soft-
ware entities are visible. The user can interact with the 3D metric by clicking on objects
that represent software classes or interfaces. The corresponding entity in the 3D UML di-
agram is selected and the view is filtered on this entity with its connected entities. This
enables the user to examine the structural information of a metric diagram and connect

6.2. FUTURE WORK 35

this information to the architectural information of an UML class diagram.

Source-code metric can be combined by linking the source-code metrics to the UML
class entities and link the selection between the two views.

6.1.1. MAIN RESEARCH QUESTION

With the answers of the sub questions the main research question can now be answered:

How can we add value to software understanding with 3D techniques?

3D techniques have an added value over 2D techniques. However, only when applied in
the correct way. Simply converting 2D UML class diagrams to 3D UML class diagrams does
not contribute to the 2D problems from the introduction. When applying different filters
on the UML entities, and enable navigation, the investigated problems are mostly tackled.
But this cannot be charged to the 3D part. The same techniques could be implemented
with a 2D tool and we think that the same results can be achieved. This can be done in
future work.

On the other side, with metric visualization, 3D is clearly an added value over 2D met-
rics. The fact that multiple metrics can be combined in one overview is of added value. This
is highlighted by the combination of the metrics and the UML class diagram. The combi-
nation of multiple metrics gives a quick, and nice presentable, overview of the software
metrics.

The added value of 3D techniques in software understanding can therefore be found in
the coupling of 3D metric views to UML class diagrams.

6.2. FUTURE WORK

This sections contains proposals for future work.

6.2.1. 3D UML

We did research the conversion of UML class diagrams. State diagrams are already suc-
cessfully converted to 3D by others [11]. This suggests that behavioral diagrams are better
suited for 3D conversion. Future work can be done on investigating possibilities of trans-
forming other UML diagram types to 3D.

We did transform the 2D UML class diagram to an as close as possible 3D UML class
diagram with respect to the UML notation. We want to investigate the possibility to use
metaphors in UML diagrams. With software metrics this gives advantages over 2D. This
may also be the case for UML diagrams.

The visualization of 3D UML diagrams as implemented is not perfect. Future work can
concentrate on improving the visualization by turning the association lines into cornered
lines instead of straight. Also experiments should be done with different object represen-
tations, as we did only implement one specific representation (a green box).

36 6. CONCLUSIONS AND FUTURE WORK

6.2.2. 2D UML

Our research presented a way to improve the software design with UML class diagrams by
implementing features such as filtering and navigation. These features can also be imple-
mented in 2D tools. Filtering features have possible the same positive effects in 2D dia-
grams. The navigation tools as implemented in 3D cannot be transferred to the 2D space
as the third dimension is missing. But extra research can be done on navigation problems
in 2D UML diagrams.

6.2.3. METRICS

We did implement one specific metric representation that contains two different metrics.
More metric metaphors can be investigated and what metaphor displays information in
the best way. Also different metrics should be taken into account, for example “lines of
code” and “cyclomatic complexity”.

6.2.4. ADDED VALUE STUDY

The prototype tool should be further developed to a mature tool. This enables to conduct
a survey with test-users about the added value. The maturity is needed to ensure the com-
ments of the testers are about the goals of the software and not about the useability.

BIBLIOGRAPHY

[1] T. Ball and S. G. Eick. Software visualization in the large. Computer, 29(4):33–43, 1996.

[2] S. Bassil and R. K. Keller. Software visualization tools: survey and analysis. In Proceed-
ings 9th International Workshop on Program Comprehension. IWPC 2001, pages 7–17,
2001.

[3] Mark Bruls, Kees Huizing, and Jarke van Wijk. Squarified treemaps. In In Proceedings
of the Joint Eurographics and IEEE TCVG Symposium on Visualization, pages 33–42.
Press, 1999.

[4] Yael Dubinsky and Orit Hazzan. Using metaphors with software teams. pages 687–690.
ACM, 2009.

[5] Tim Dwyer. Three dimensional uml using force directed layout. In Proceedings of
the 2001 Asia-Pacific Symposium on Information Visualisation - Volume 9, APVis ’01,
pages 77–85, Darlinghurst, Australia, Australia, 2001. Australian Computer Society,
Inc.

[6] Thomas J. Ball and Stephen G. Eick. Software visualization in the large. 29, 04 1999.

[7] I. Jacobson, G. Booch, and J. Rumbaugh. The unified process (reprinted from the uni-
fied software development process). IEEE SOFTWARE, 16(3):96–96, 1999.

[8] Anne-Katrin Krolovitsch and Linda Nilsson. 3d visualization for model comprehen-
sion — a case study conducted at ericsson ab. 01 2009.

[9] A. Kuhn, D. Erni, P. Loretan, and O. Nierstrasz. Software cartography: thematic soft-
ware visualization with consistent layout. JOURNAL OF SOFTWARE MAINTENANCE
AND EVOLUTION-RESEARCH AND PRACTICE, 22(3):191–210, 2010.

[10] C.F.J. Lange, Michel Chaudron, and Johan Muskens. In practice: Uml software archi-
tecture and design description. 23:40 – 46, 04 2006.

[11] Paul McIntosh, Margaret Hamilton, and Ron van Schyndel. X3D-UML: 3D UML State
Machine Diagrams, volume 5301, pages 264–279. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2008.

[12] J. Nielsen. 2d is better than 3d, 1998.

[13] Juergen Rilling and S. P. Mudur. 3D visualization techniques to support slicing-based
program comprehension, volume 29, pages 311–329. 2005.

37

38 BIBLIOGRAPHY

[14] Juergen Rilling, Ahmed Seffah, and Christophe Bouthlier. The concept project " ap-
plying source code analysis to reduce information complexity of static and dynamic
visualization techniques. In Proceedings of the 1st International Workshop on Visual-
izing Software for Understanding and Analysis, VISSOFT ’02, pages 90–, Washington,
DC, USA, 2002. IEEE Computer Society.

[15] M. Termeer, C. F. J. Lange, A. Telea, and M. R. V. Chaudron. Visual exploration of com-
bined architectural and metric information. In 3rd IEEE International Workshop on
Visualizing Software for Understanding and Analysis, pages 1–6, 2005.

[16] Colin Ware and Glenn Franck. Viewing a graph in a virtual reality display is three times
as good as a 2d diagram. pages 182 – 183, 11 1994.

[17] Richard Wettel and Michele Lanza. Codecity: 3d visualization of large-scale software.
pages 921–922. ACM, 2008.

A
XMI FILE EXAMPLE

This appendix shows an example XMI file that is used in the software tool to create a 3D
representation.

<?xml version = ’ 1.0 ’ encoding = ’UTF−8 ’ ?>
<XMI xmi . version = ’ 1.2 ’ xmlns:UML = ’ org .omg. xmi . namespace .UML’

timestamp = ’Mon Nov 20 09 : 5 9 : 0 9 CET 2017 ’>
<XMI. header> <XMI. documentation>

<XMI. exporter>ArgoUML (using Netbeans XMI Writer version 1 . 0) </
XMI. exporter>

<XMI. exporterVersion> 0 . 3 4 (6) revised on $Date: 2010−01−11 22
: 2 0 : 1 4 +0100 (Mon, 11 Jan 2010) $ </XMI. exporterVersion>

</XMI. documentation>
<XMI. metamodel xmi .name="UML" xmi . version=" 1.4 " /></XMI. header>

<XMI. content>
<UML:Model xmi . id = ’10−75−0−−117−445b0ed8:15fc55de477:−8000

:0000000000000B8C ’
name = ’ untitledModel ’ i s S p e c i f i c a t i o n = ’ f a l s e ’ isRoot = ’ f a l s e

’ i s L e a f = ’ f a l s e ’
i s A b s t r a c t = ’ f a l s e ’>
<UML:Namespace . ownedElement>

<UML:Class xmi . id = ’10−75−0−−117−445b0ed8:15fc55de477:−8000
:0000000000000B8D ’

name = ’ AbstractFactory ’ v i s i b i l i t y = ’ public ’
i s S p e c i f i c a t i o n = ’ f a l s e ’

isRoot = ’ f a l s e ’ i s L e a f = ’ f a l s e ’ i s A b s t r a c t = ’ true ’
i s A c t i v e = ’ f a l s e ’ />

<UML:Class xmi . id = ’10−75−0−−117−445b0ed8:15fc55de477:−8000
:0000000000000B8E ’

name = ’ FactoryA ’ v i s i b i l i t y = ’ public ’ i s S p e c i f i c a t i o n = ’
f a l s e ’ isRoot = ’ f a l s e ’

i s L e a f = ’ f a l s e ’ i s A b s t r a c t = ’ f a l s e ’ i s A c t i v e = ’ f a l s e ’>

39

40 A. XMI FILE EXAMPLE

<UML:ModelElement . clientDependency>
<UML:Usage xmi . i d r e f = ’10−75−0−−117−445b0ed8:15fc55de477:

−8000:0000000000000B9D ’ />
</UML:ModelElement . clientDependency>
<UML:GeneralizableElement . general ization>

<UML:Generalization xmi . i d r e f = ’10−75−0−−117−445
b0ed8:15fc55de477:−8000:0000000000000B91 ’ />

</UML:GeneralizableElement . general ization>
</UML:Class>
<UML:Class xmi . id = ’10−75−0−−117−445b0ed8:15fc55de477:−8000

:0000000000000B8F ’
name = ’ FactoryB ’ v i s i b i l i t y = ’ public ’ i s S p e c i f i c a t i o n = ’

f a l s e ’ isRoot = ’ f a l s e ’
i s L e a f = ’ f a l s e ’ i s A b s t r a c t = ’ f a l s e ’ i s A c t i v e = ’ f a l s e ’>
<UML:ModelElement . clientDependency>

<UML:Usage xmi . i d r e f = ’10−75−0−−117−445b0ed8:15fc55de477:
−8000:0000000000000B9C ’ />

</UML:ModelElement . clientDependency>
<UML:GeneralizableElement . general ization>

<UML:Generalization xmi . i d r e f = ’10−75−0−−117−445
b0ed8:15fc55de477:−8000:0000000000000B92 ’ />

</UML:GeneralizableElement . general ization>
</UML:Class>
<UML:Generalization xmi . id = ’10−75−0−−117−445

b0ed8:15fc55de477:−8000:0000000000000B91 ’
i s S p e c i f i c a t i o n = ’ f a l s e ’>
<UML:Generalization . child>

<UML:Class xmi . i d r e f = ’10−75−0−−117−445b0ed8:15fc55de477:
−8000:0000000000000B8E ’ />

</ UML:Generalization . child>
<UML:Generalization . parent>

<UML:Class xmi . i d r e f = ’10−75−0−−117−445b0ed8:15fc55de477:
−8000:0000000000000B8D ’ />

</ UML:Generalization . parent>
</ UML:Generalization>
<UML:Generalization xmi . id = ’10−75−0−−117−445

b0ed8:15fc55de477:−8000:0000000000000B92 ’
i s S p e c i f i c a t i o n = ’ f a l s e ’>
<UML:Generalization . child>

<UML:Class xmi . i d r e f = ’10−75−0−−117−445b0ed8:15fc55de477:
−8000:0000000000000B8F ’ />

</ UML:Generalization . child>
<UML:Generalization . parent>

<UML:Class xmi . i d r e f = ’10−75−0−−117−445b0ed8:15fc55de477:
−8000:0000000000000B8D ’ />

</ UML:Generalization . parent>

41

</ UML:Generalization>
<UML:Class xmi . id = ’10−75−0−−117−445b0ed8:15fc55de477:−8000

:0000000000000B93 ’
name = ’ AbstractProduct ’ v i s i b i l i t y = ’ public ’

i s S p e c i f i c a t i o n = ’ f a l s e ’
isRoot = ’ f a l s e ’ i s L e a f = ’ f a l s e ’ i s A b s t r a c t = ’ true ’

i s A c t i v e = ’ f a l s e ’ />
<UML:Class xmi . id = ’10−75−0−−117−445b0ed8:15fc55de477:−8000

:0000000000000B94 ’
name = ’ ProductA ’ v i s i b i l i t y = ’ public ’ i s S p e c i f i c a t i o n = ’

f a l s e ’ isRoot = ’ f a l s e ’
i s L e a f = ’ f a l s e ’ i s A b s t r a c t = ’ f a l s e ’ i s A c t i v e = ’ f a l s e ’>
<UML:GeneralizableElement . general ization>

<UML:Generalization xmi . i d r e f = ’10−75−0−−117−445
b0ed8:15fc55de477:−8000:0000000000000B96 ’ />

</UML:GeneralizableElement . general ization>
</UML:Class>
<UML:Class xmi . id = ’10−75−0−−117−445b0ed8:15fc55de477:−8000

:0000000000000B95 ’
name = ’ ProductB ’ v i s i b i l i t y = ’ public ’ i s S p e c i f i c a t i o n = ’

f a l s e ’ isRoot = ’ f a l s e ’
i s L e a f = ’ f a l s e ’ i s A b s t r a c t = ’ f a l s e ’ i s A c t i v e = ’ f a l s e ’>
<UML:ModelElement . clientDependency>

<UML:Abstraction xmi . i d r e f = ’10−75−0−−117−−
a68c109:15fc95c2949:−8000:0000000000000C75 ’ />

</UML:ModelElement . clientDependency>
<UML:GeneralizableElement . general ization>

<UML:Generalization xmi . i d r e f = ’10−75−0−−117−445
b0ed8:15fc55de477:−8000:0000000000000B97 ’ />

</UML:GeneralizableElement . general ization>
</UML:Class>
<UML:Generalization xmi . id = ’10−75−0−−117−445

b0ed8:15fc55de477:−8000:0000000000000B96 ’
i s S p e c i f i c a t i o n = ’ f a l s e ’>
<UML:Generalization . child>

<UML:Class xmi . i d r e f = ’10−75−0−−117−445b0ed8:15fc55de477:
−8000:0000000000000B94 ’ />

</ UML:Generalization . child>
<UML:Generalization . parent>

<UML:Class xmi . i d r e f = ’10−75−0−−117−445b0ed8:15fc55de477:
−8000:0000000000000B93 ’ />

</ UML:Generalization . parent>
</ UML:Generalization>
<UML:Generalization xmi . id = ’10−75−0−−117−445

b0ed8:15fc55de477:−8000:0000000000000B97 ’
i s S p e c i f i c a t i o n = ’ f a l s e ’>

42 A. XMI FILE EXAMPLE

<UML:Generalization . child>
<UML:Class xmi . i d r e f = ’10−75−0−−117−445b0ed8:15fc55de477:

−8000:0000000000000B95 ’ />
</ UML:Generalization . child>
<UML:Generalization . parent>

<UML:Class xmi . i d r e f = ’10−75−0−−117−445b0ed8:15fc55de477:
−8000:0000000000000B93 ’ />

</ UML:Generalization . parent>
</ UML:Generalization>
<UML:Usage xmi . id = ’10−75−0−−117−445b0ed8:15fc55de477:−8000

:0000000000000B9C ’
i s S p e c i f i c a t i o n = ’ f a l s e ’>
<UML:ModelElement . stereotype>

<UML:Stereotype href = ’ h t t p : //argouml . org / p r o f i l e s /uml14/
default−uml14 . xmi # . :000000000000082B ’ />

</UML:ModelElement . stereotype>
<UML:Dependency . c l i e n t >

<UML:Class xmi . i d r e f = ’10−75−0−−117−445b0ed8:15fc55de477:
−8000:0000000000000B8F ’ />

</UML:Dependency . c l i e n t >
<UML:Dependency . supplier>

<UML:Class xmi . i d r e f = ’10−75−0−−117−445b0ed8:15fc55de477:
−8000:0000000000000B95 ’ />

</UML:Dependency . supplier>
</UML:Usage>
<UML:Usage xmi . id = ’10−75−0−−117−445b0ed8:15fc55de477:−8000

:0000000000000B9D ’
i s S p e c i f i c a t i o n = ’ f a l s e ’>
<UML:ModelElement . stereotype>

<UML:Stereotype href = ’ h t t p : //argouml . org / p r o f i l e s /uml14/
default−uml14 . xmi # . :000000000000082B ’ />

</UML:ModelElement . stereotype>
<UML:Dependency . c l i e n t >

<UML:Class xmi . i d r e f = ’10−75−0−−117−445b0ed8:15fc55de477:
−8000:0000000000000B8E ’ />

</UML:Dependency . c l i e n t >
<UML:Dependency . supplier>

<UML:Class xmi . i d r e f = ’10−75−0−−117−445b0ed8:15fc55de477:
−8000:0000000000000B94 ’ />

</UML:Dependency . supplier>
</UML:Usage>
<UML:Class xmi . id = ’10−75−0−−117−445b0ed8:15fc55de477:−8000

:0000000000000BA0 ’
name = ’ Client ’ v i s i b i l i t y = ’ public ’ i s S p e c i f i c a t i o n = ’

f a l s e ’ isRoot = ’ f a l s e ’
i s L e a f = ’ f a l s e ’ i s A b s t r a c t = ’ f a l s e ’ i s A c t i v e = ’ f a l s e ’>

43

<UML:ModelElement . clientDependency>
<UML:Dependency xmi . i d r e f = ’10−75−0−−116−−68

b9f8e5:15fd8892a25:−8000:0000000000000A6F ’ />
</UML:ModelElement . clientDependency>
<UML:Namespace . ownedElement>

<UML:Dependency xmi . id = ’10−75−0−−116−−68
b9f8e5:15fd8892a25:−8000:0000000000000A6F ’

i s S p e c i f i c a t i o n = ’ f a l s e ’>
<UML:Dependency . c l i e n t >

<UML:Class xmi . i d r e f = ’10−75−0−−117−445
b0ed8:15fc55de477:−8000:0000000000000BA0 ’ />

</UML:Dependency . c l i e n t >
<UML:Dependency . supplier>

<UML:Class xmi . i d r e f = ’10−75−0−−117−445
b0ed8:15fc55de477:−8000:0000000000000B8D ’ />

</UML:Dependency . supplier>
</UML:Dependency>

</UML:Namespace . ownedElement>
</UML:Class>
<UML:Interface xmi . id = ’10−75−0−−117−−a68c109:15fc95c2949:

−8000:0000000000000C74 ’
name = ’ Interface ’ v i s i b i l i t y = ’ public ’ i s S p e c i f i c a t i o n = ’

f a l s e ’ isRoot = ’ f a l s e ’
i s L e a f = ’ f a l s e ’ i s A b s t r a c t = ’ f a l s e ’ />

<UML:Abstraction xmi . id = ’10−75−0−−117−−a68c109:15fc95c2949:
−8000:0000000000000C75 ’

i s S p e c i f i c a t i o n = ’ f a l s e ’>
<UML:ModelElement . stereotype>

<UML:Stereotype href = ’ h t t p : //argouml . org / p r o f i l e s /uml14/
default−uml14 . xmi # . :0000000000000834 ’ />

</UML:ModelElement . stereotype>
<UML:Dependency . c l i e n t >

<UML:Class xmi . i d r e f = ’10−75−0−−117−445b0ed8:15fc55de477:
−8000:0000000000000B95 ’ />

</UML:Dependency . c l i e n t >
<UML:Dependency . supplier>

<UML:Interface xmi . i d r e f = ’10−75−0−−117−−
a68c109:15fc95c2949:−8000:0000000000000C74 ’ />

</UML:Dependency . supplier>
</UML:Abstraction>
<UML:Association xmi . id = ’10−75−0−−116−−68b9f8e5:15fd8892a25:

−8000:0000000000000A70 ’
name = ’ ’ i s S p e c i f i c a t i o n = ’ f a l s e ’ isRoot = ’ f a l s e ’ i s L e a f

= ’ f a l s e ’ i s A b s t r a c t = ’ f a l s e ’>
<UML:Association . connection>

44 A. XMI FILE EXAMPLE

<UML:AssociationEnd xmi . id = ’10−75−0−−116−−68
b9f8e5:15fd8892a25:−8000:0000000000000A71 ’

v i s i b i l i t y = ’ public ’ i s S p e c i f i c a t i o n = ’ f a l s e ’
isNavigable = ’ f a l s e ’ ordering = ’ unordered ’

aggregation = ’none ’ targetScope = ’ instance ’
changeabil ity = ’ changeable ’>

<UML:AssociationEnd . part icipant>
<UML:Class xmi . i d r e f = ’10−75−0−−117−445

b0ed8:15fc55de477:−8000:0000000000000BA0 ’ />
</UML:AssociationEnd . part ic ipant>

</UML:AssociationEnd>
<UML:AssociationEnd xmi . id = ’10−75−0−−116−−68

b9f8e5:15fd8892a25:−8000:0000000000000A72 ’
v i s i b i l i t y = ’ public ’ i s S p e c i f i c a t i o n = ’ f a l s e ’

isNavigable = ’ true ’ ordering = ’ unordered ’
aggregation = ’none ’ targetScope = ’ instance ’

changeabil ity = ’ changeable ’>
<UML:AssociationEnd . part icipant>

<UML:Class xmi . i d r e f = ’10−75−0−−117−445
b0ed8:15fc55de477:−8000:0000000000000B8D ’ />

</UML:AssociationEnd . part ic ipant>
</UML:AssociationEnd>

</UML:Association . connection>
</UML:Association>
<UML:Association xmi . id = ’10−75−0−−116−−68b9f8e5:15fd8892a25:

−8000:0000000000000A73 ’
name = ’ ’ i s S p e c i f i c a t i o n = ’ f a l s e ’ isRoot = ’ f a l s e ’ i s L e a f

= ’ f a l s e ’ i s A b s t r a c t = ’ f a l s e ’>
<UML:Association . connection>

<UML:AssociationEnd xmi . id = ’10−75−0−−116−−68
b9f8e5:15fd8892a25:−8000:0000000000000A74 ’

v i s i b i l i t y = ’ public ’ i s S p e c i f i c a t i o n = ’ f a l s e ’
isNavigable = ’ f a l s e ’ ordering = ’ unordered ’

aggregation = ’none ’ targetScope = ’ instance ’
changeabil ity = ’ changeable ’>

<UML:AssociationEnd . part icipant>
<UML:Class xmi . i d r e f = ’10−75−0−−117−445

b0ed8:15fc55de477:−8000:0000000000000BA0 ’ />
</UML:AssociationEnd . part ic ipant>

</UML:AssociationEnd>
<UML:AssociationEnd xmi . id = ’10−75−0−−116−−68

b9f8e5:15fd8892a25:−8000:0000000000000A75 ’
v i s i b i l i t y = ’ public ’ i s S p e c i f i c a t i o n = ’ f a l s e ’

isNavigable = ’ true ’ ordering = ’ unordered ’
aggregation = ’none ’ targetScope = ’ instance ’

changeabil ity = ’ changeable ’>

45

<UML:AssociationEnd . part icipant>
<UML:Class xmi . i d r e f = ’10−75−0−−117−445

b0ed8:15fc55de477:−8000:0000000000000B93 ’ />
</UML:AssociationEnd . part ic ipant>

</UML:AssociationEnd>
</UML:Association . connection>

</UML:Association>
</UML:Namespace . ownedElement>

</UML:Model>
</XMI. content>

</XMI>

B
3D UML CONVERSION RESULTS

This appendix shows additional validation results. The conversion of the 2D Jabberpoint
results are shown with their 3D conversions.

B.1. JABBERPOINT RESULT 1

B.1.1. DIAGRAM 1

Figure B.1: 2D UML diagram assignment 1-1

46

B.1. JABBERPOINT RESULT 1 47

Figure B.2: 3D UML diagram assignment 1-1

Figure B.3: 3D Metric diagram assignment 1-1

48 B. 3D UML CONVERSION RESULTS

Figure B.4: 3D Metric UML combination assignment 1-1

B.1. JABBERPOINT RESULT 1 49

B.1.2. DIAGRAM 2

Figure B.5: 2D UML diagram assignment 1-2

Figure B.6: 3D UML diagram assignment 1-2

50 B. 3D UML CONVERSION RESULTS

Figure B.7: 3D Metric diagram assignment 1-2

Figure B.8: 3D Metric UML combination assignment 1-2

B.1. JABBERPOINT RESULT 1 51

B.1.3. DIAGRAM 3

Figure B.9: 2D UML diagram assignment 1-3

Figure B.10: 3D UML diagram assignment 1-3

52 B. 3D UML CONVERSION RESULTS

Figure B.11: 3D Metric diagram assignment 1-3

Figure B.12: 3D Metric UML combination assignment 1-3

B.2. JABBERPOINT RESULT 2 53

B.2. JABBERPOINT RESULT 2

Figure B.13: 2D UML diagram assignment 2

Figure B.14: 3D UML diagram assignment 2

54 B. 3D UML CONVERSION RESULTS

Figure B.15: 3D Metric diagram assignment 2

Figure B.16: 3D Metric UML combination assignment 2

B.3. JABBERPOINT RESULT 3 55

B.3. JABBERPOINT RESULT 3

Figure B.17: 2D UML diagram assignment 3

Figure B.18: 3D UML diagram assignment 3

56 B. 3D UML CONVERSION RESULTS

Figure B.19: 3D Metric diagram assignment 3

Figure B.20: 3D Metric UML combination assignment 3

	List of Figures
	Summary
	Samenvatting
	Introduction
	Context & Scope
	Software design

	Thesis overview

	Research method
	Introduction
	Validation context

	Research method
	Research questions
	Validation
	Scope
	Validation method

	Research contributions

	Background
	2D visualization
	Problem area 2D visualization

	3D visualization
	Why 3D?

	Software metrics
	Combine UML and metrics
	Functional requirements

	Software prototype
	Functional requirements
	Constrains
	Technical implementation
	Importing XMI
	3D UML class diagram
	Navigation controls
	Filtering
	Combining UML and code metrics

	Validation results
	Results
	Functional requirements
	Visualization
	Code metrics
	Navigation
	Filtering
	Combine metrics

	Conclusions and future work
	Conclusions
	Main research question

	Future work
	3D UML
	2D UML
	Metrics
	Added value study

	Bibliography
	Appendices
	XMI file example
	3D UML conversion results
	Jabberpoint result 1
	Diagram 1
	Diagram 2
	Diagram 3

	Jabberpoint result 2
	Jabberpoint result 3

